已知,如圖,△ABC中,AB=AC,AD是∠EAF的角平分線,BE=CF,則下列說法正確的有
(1),(2),(3),(4)
(1),(2),(3),(4)
(填序號).
(1)AD平分∠EDF;
(2)△EBD≌△FCD;
(3)BD=CD;
(4)AD⊥BC.
分析:延長AD,在等腰三角形中,頂角的平分線即底邊上的中線,垂線.利用三線合一的性質(zhì),進而可求解,得出結(jié)論.
解答:解:延長AD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠EBD=∠FCD,
∵AD是∠EAF的角平分線,
∴BD=CD,
又∵BE=CF,
在△EBD和△FCD中,
BE=CF
∠EBD=∠FCD
BD=CD
,
∴△EBD≌△FCD(SAS),
∴∠ADE=∠ADF,
∴∠EDG=∠FDG,
即AD平分∠EDF.
所以四個都正確,
故答案為(1),(2),(3),(4).
點評:本題考查了全等三角形的判定和性質(zhì);熟練掌握三角形的性質(zhì),理解等腰三角形中中線,平分線,垂線等線段之間的區(qū)別與聯(lián)系,會求一些簡單的全等三角形.做題時,要結(jié)合已知條件與全等的判定方法對選項逐一驗證.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習冊答案