已知3a=7,求3a+2的值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2011年廣西玉林市中考數(shù)學(xué)試卷 題型:044
已知拋物線y=ax2-2ax-3a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B的坐標(biāo);
(2)過點(diǎn)D作DH丄y軸于點(diǎn)H,若DH=HC,求a的值和直線CD的解析式;
(3)在第(2)小題的條件下,直線CD與x軸交于點(diǎn)E,過線段OB的中點(diǎn)N作NF丄x軸,并交直線CD于點(diǎn)F,則直線NF上是否存在點(diǎn)M,使得點(diǎn)M到直線CD的距離等于點(diǎn)M到原點(diǎn)O的距離?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年廣西省玉林防城港中考數(shù)學(xué)試題 題型:044
已知拋物線y=ax2-2ax-3a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B的坐標(biāo);
(2)過點(diǎn)D作DH丄y軸于點(diǎn)H,若DH=HC,求a的值和直線CD的解析式;
(3)在第(2)小題的條件下,直線CD與x軸交于點(diǎn)E,過線段OB的中點(diǎn)N作NF丄x軸,并交直線CD于點(diǎn)F,則直線NF上是否存在點(diǎn)M,使得點(diǎn)M到直線CD的距離等于點(diǎn)M到原點(diǎn)O的距離?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線C1的函數(shù)解析式為y=ax2+bx-3a(b<0),若拋物線C1經(jīng)過點(diǎn)(0,-3),方程ax2+bx-3a=0的兩根為x1,x2,且|x1-x2|=4.
⑴求拋物線C1的頂點(diǎn)坐標(biāo). 新 課 標(biāo) 第 一 網(wǎng)
⑵已知實(shí)數(shù)x>0,請(qǐng)證明x+≥2,并說明x為何值時(shí)才會(huì)有x+=2.
⑶若將拋物線先向上平移4個(gè)單位,再向左平移1個(gè)單位后得到拋物線C2,設(shè)A(m,y1),B(n,y2)是C2上的兩個(gè)不同點(diǎn),且滿足:∠AOB=90︒,m>0,n<0.請(qǐng)你用含m的表達(dá)式表示出△AOB的面積S,并求出S的最小值及S取最小值時(shí)一次函數(shù)OA的函數(shù)解析式.
(參考公式:在平面直角坐標(biāo)系中,若P(x1,y1),Q(x2,y2),則P,Q兩點(diǎn)間的距離為)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線的函數(shù)解析式為y=ax2+bx-3a(b<0),若這條拋物線經(jīng)過點(diǎn)(0,-3),方程ax2+bx-3a=0的兩根為x1,x2,且|x1-x2|=4.
⑴求拋物線的頂點(diǎn)坐標(biāo).
⑵已知實(shí)數(shù)x>0,請(qǐng)證明x+≥2,并說明x為何值時(shí)才會(huì)有x+=2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com