【題目】已知:直線ll外一點(diǎn)C

求作:經(jīng)過點(diǎn)C且垂直于l的直線.

作法:如圖,

(1)在直線l上任取點(diǎn)A;

(2)以點(diǎn)C為圓心,AC為半徑作圓,交直線l于點(diǎn)B

(3)分別以點(diǎn)A,B為圓心,大于的長為半徑作弧,兩弧相交于點(diǎn)D;

(4)作直線CD

所以直線CD就是所求作的垂線.

(1)請(qǐng)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);

(2)完成下面的證明.

證明:連接AC,BC,AD,BD

ACBC,      ,

CDAB(依據(jù):   ).

【答案】(1)見解析;(2)AD,BD,到線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線上.

【解析】

(1)按照要求畫圖,注意保留必要的作圖痕跡.

(2)根據(jù)垂直平分線的判定定理即可證明.

1)解:如圖所示:

2)證明:連接ACBC,ADBD

ACBC,ADBD,

CDAB(依據(jù):到線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線上).

故答案為:AD,BD,到線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,AC是弦,CD是O的切線,C為切點(diǎn),ADCD于點(diǎn)D

求證:1AOC=2ACD;2AC2=AB·AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC∽△A′B′C′,AB=4 cm,A′B′=3 cm,AD,A′D′分別為ABCA′B′C′的中線,下列結(jié)論中:①ADA′D′=43;②△ABD∽△A′B′D′;③△ABD∽△A′B′C′;④△ABCA′B′C′對(duì)應(yīng)邊上的高之比為43.其中結(jié)論正確的序號(hào)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB6,AD8,點(diǎn)E是邊AD上一點(diǎn),EMBCAB于點(diǎn)M,點(diǎn)N在射線MB上,且AEAMAN的比例中項(xiàng).

1)如圖1,求證:∠ANE=∠DCE;

2)如圖2,當(dāng)點(diǎn)N在線段MB之間,聯(lián)結(jié)AC,且ACNE互相垂直,求MN的長;

3)連接AC,如果AEC與以點(diǎn)EM、N為頂點(diǎn)所組成的三角形相似,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;

(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是弧AB所對(duì)弦AB上一動(dòng)點(diǎn),過點(diǎn)PPCABAB于點(diǎn)P,作射線AC交弧AB于點(diǎn)D.已知AB=6cmPC=1cm,設(shè)AP兩點(diǎn)間的距離為xcm,A,D兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),y的值為0)

小平根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小平的探究過程,請(qǐng)補(bǔ)充完整:

(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了yx的幾組對(duì)應(yīng)值;

x/cm

0

1

2

3

4

5

6

y1/cm

0

4.24

5.37

m

5.82

5.88

5.92

經(jīng)測量m的值是   (保留一位小數(shù)).

(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y),并畫出函數(shù)y的圖象;

(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)∠PAC=30°,AD的長度約為   cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax22ax3a≠0)的圖象經(jīng)過點(diǎn)A

1)求二次函數(shù)的對(duì)稱軸;

2)當(dāng)A(﹣1,0)時(shí),

①求此時(shí)二次函數(shù)的表達(dá)式;

②把yax22ax3化為yaxh2+k的形式,并寫出頂點(diǎn)坐標(biāo);

③畫出函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),的部分對(duì)應(yīng)值如下表所示:

-1

0

1

2

3

4

6

1

-2

-3

-2

m

下面有四個(gè)論斷:

①拋物線的頂點(diǎn)為

;

③關(guān)于的方程的解為;

其中,正確的有___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)運(yùn)動(dòng)隊(duì)有短跑、長跑、跳遠(yuǎn)、實(shí)心球四個(gè)訓(xùn)練小隊(duì),現(xiàn)將四個(gè)訓(xùn)練小隊(duì)隊(duì)員情況繪制成如下不完整的統(tǒng)計(jì)圖:

(l)學(xué)校運(yùn)動(dòng)隊(duì)的隊(duì)員總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中短跑訓(xùn)練小隊(duì)所對(duì)應(yīng)圓心角的度數(shù)為 ;

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并標(biāo)明數(shù)據(jù);

(3)若在短跑訓(xùn)練小組中隨機(jī)選取2名同學(xué)進(jìn)行比賽,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的這兩名同學(xué)恰好是一男一女的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案