證明:(1)∵四邊形DBEC是平行四邊形,
∴DE∥BC,
∵D為AB中點,
∴DF為△ABC的中位線,
即點F為AC的中點;
(2)∵平行四邊形BDEC,
∴CE平行等于BD.
∵D為AB中點,
∴AD=BD,
∴CE平行且等于AD,
∴四邊形ADCE為平行四邊形,
又∵AD=CD=BD,
∴四邊形ADCE為菱形;
(3)應(yīng)添加條件AC=BC.
證明:∵AC=BC,D為AB中點,
∴CD⊥AB(三線合一的性質(zhì)),即∠ADC=90°.
∵四邊形BCED為平行四邊形,四邊形ADCE為平行四邊形,
∴DE=BC=AC,∠AFD=∠ACB=90°.
∴四邊形ADCE為正方形.(對角線互相垂直且相等的四邊形是正方形)
分析:(1)根據(jù)三角形的中位線,證出即可;
(2)由題意容易證明CE平行且等于AD,AD=CD=BD,所以得到四邊形ADCE為菱形;
(2)應(yīng)添加條件AC=BC,證明CD⊥AB且相等即可.
點評:此題主要考查平行四邊形、正方形的判定.