【題目】將五個邊長都為3cm的正方形按如圖所示擺放,點(diǎn)A、B、C、D分別是四個正方形的中心,則圖中四塊陰影面積的和為( )
A.3cm2
B.6cm2
C.9cm2
D.18cm2
【答案】C
【解析】解:如圖AB、AF.
∵∠EAG=∠BAF=90°,
∴∠BAE=∠FAG,
在△ABE和△AFG中,
,
∴△ABE≌△AFG,
∴S△ABE=S△AFG ,
∴S四邊形AEBG=S△ABF= S正方形 ,
∴S陰=4× S正方形=9,
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E是直線AB,CD內(nèi)部一點(diǎn),AB∥CD,連接EA,ED.
(1)探究猜想:①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③猜想圖1中∠AED,∠EAB,∠EDC的關(guān)系并證明你的結(jié)論.
(2)拓展應(yīng)用:如圖2,線段FE與長方形ABCD的邊AB交于點(diǎn)E,與邊CD 交于點(diǎn)F.圖2中①②分別是被線段FE隔開的2個區(qū)域(不含邊界),P是位于以上兩個區(qū)域內(nèi)的一點(diǎn),猜想∠PEB,∠PFC,∠EPF的關(guān)系(不要求說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要調(diào)查你校學(xué)生學(xué)業(yè)負(fù)擔(dān)是否過重,選用下列哪種方法最恰當(dāng)( 。
A.查閱文獻(xiàn)資料
B.對學(xué)生問卷調(diào)查
C.上網(wǎng)查詢
D.對校領(lǐng)導(dǎo)問卷調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由一些棱長都為1的小正方體組合成的簡單幾何體.
(1)請畫出這個幾何體的三視圖并用陰影表示出來;
(2)該幾何體的表面積(含下底面)為 ;
(3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的主視圖和俯視圖不變,那么最多可以再添加 個小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC為對角線,點(diǎn)E、F分別是邊BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l∥AB,P是l上一動點(diǎn),點(diǎn)M,N分別為PA,PB的中點(diǎn),對下列各值: ①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大小.
其中會隨點(diǎn)P的移動而變化的是( )
A.②③
B.②⑤
C.①③④
D.④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn) A2, 3關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)是( )
A. 2, 3 B. 2, 3 C. 2, 3 D. 3, 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com