解:(1)四個不同類型的正確結(jié)論分別為:∠ACB=90°;BE=CE;
=
;OD∥AC;
(2)∵OD⊥BC,BE=4,
∴BE=CE=4,即BC=2BE=8,
∵AB為圓O的直徑,∴∠ACB=90°,
在Rt△ABC中,AC=6,BC=8,
根據(jù)勾股定理得:AB=10,
∴OB=5,
在Rt△OBE中,OB=5,BE=4,
根據(jù)勾股定理得:OE=3,
則ED=OB-OE=5-3=2.
分析:(1)由AB為圓的直徑,利用直徑所對的圓周角為直角可得出∠ACB為直角;由OD垂直于BC,利用垂徑定理得到E為BC的中點,即BE=CE,
=
,由OD垂直于BC,AC也垂直于BC,利用垂直于同一條直線的兩直線平行可得出OD與AC平行;
(2)由OD垂直于BC,利用垂徑定理得到E為BC的中點,由BE的長求出BC的長,由AB為圓的直徑,利用直徑所對的圓周角為直角可得出∠ACB為直角,在直角三角形ABC中,由BC與AC的長,利用勾股定理求出AB的長,進(jìn)而求出半徑OB與OD的長,在直角三角形BOE中,由OB與BE的長,利用勾股定理求出OE的長,由OD-OE即可求出DE的長.
點評:此題考查了垂徑定理,勾股定理,圓周角定理,以及平行線的判定,熟練掌握定理是解本題的關(guān)鍵.