【題目】如圖,在平面直角坐標(biāo)系中,點,的坐標(biāo)分別為是由經(jīng)過一系列變化得到的.

(1)請通過作圖說明經(jīng)過怎樣的變化可以得到;

(2)內(nèi)任一點,則它的對應(yīng)點的坐標(biāo)為

【答案】(1)見解析;(2)

【解析】

1)先將向上平移2個單位,再向左平移1個單位,此時點和點重合,得到,再將點為位似中心放大2倍,得到,將向上平移2個單位即可得到,由此作圖即可;

2)根據(jù)的平移規(guī)律是向上平移2個單位,再向左平移1個單位,通過位似放大2倍后再向上平移2個單位,由此即可得到點的坐標(biāo).

解:(1)先將向上平移2個單位,再向左平移1個單位,此時點和點重合,得到,再將點為位似中心放大2倍,得到,將向上平移2個單位即可得到.

(2) P向上平移2個單位,再向左平移1個單位平移后的坐標(biāo)為:(x-1,y+2),

通過位似變換得到的點坐標(biāo)為:(2x-2,2y+4),

再向上平移2個單位,得到的點的坐標(biāo)為,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新冠肺炎的爆發(fā),市場對口罩的需求量急劇增大.某口罩生產(chǎn)商自二月份以來,--直積極恢復(fù)產(chǎn)能,每日口罩生產(chǎn)量(百萬個)與天數(shù)為整數(shù))的函數(shù)關(guān)系圖象如圖所示,而該生產(chǎn)商對口供應(yīng)市場對口罩的需求量<(百萬個)與天數(shù)呈拋物線型,第天市場口罩缺口(需求量與供應(yīng)量差)就達(dá)到(百萬個),之后若干天,市場口罩需求量不斷上升,在第天需求量達(dá)到最高峰(百萬個)

求出的函數(shù)解析式;

當(dāng)市場供應(yīng)量不小于需求量時,市民買口罩才無需提前預(yù)約,那么在整個二月份,市民無需預(yù)約即可購買口罩的天數(shù)共有多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點,且AD//CO

1)求證:△ADB∽△OBC

2)若AB=2,BC=,求AD的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店專售一款電動牙刷,其成本為20/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(/支)之間存在如圖所示的關(guān)系.

(1)yx之間的函數(shù)關(guān)系式.

(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱新冠肺炎)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻(xiàn)給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別與相切于點和點,點為弧上一點,連接并延長交于點,為弧上的一點,連接于點,連接,且

1)如圖1,求證:;

2)如圖2,連接,若,求證:平分

3)如圖3,在(2)的條件下,連接于點,連接,,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,BD是對角線,,,交DC的延長線于E,若,,則AD的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,邊上的高邊上的高交于點的長為___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中一漁船在A處于小島C相距70海里,若該漁船由西向東航行30海里到達(dá)B處,此時測得小島C位于B的北偏東30°方向上,則該漁船此時與小島C之間的距離是__海里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸負(fù)半軸上.O是坐標(biāo)原點,點A(13,0),對角線ACOB相交于點D,且ACOB130,若反比例函數(shù)yx0)的圖象經(jīng)過點D,并與BC的延長線交于點E

1)求雙曲線y的解析式;

2)求SAOBSOCE之值.

查看答案和解析>>

同步練習(xí)冊答案