已知一組數(shù)據(jù)的方差是3,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差是( )
A. 9 B. 3 C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖10,直線y=ax+1與x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線y=(x>0)相交于點(diǎn)P,PC⊥x軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為.
(1)求雙曲線的解析式;
(2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),且QH⊥x軸于H,當(dāng)以點(diǎn)Q、C、H為頂點(diǎn)的三角形與△AOB相似時,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線E1:經(jīng)過點(diǎn)A(1,m),以原點(diǎn)為頂點(diǎn)的拋物線E2經(jīng)過點(diǎn)B(2,2),點(diǎn)A、B關(guān)于y 軸的對稱點(diǎn)分別為點(diǎn).
(1)求m的值及拋物線E2所表示的二次函數(shù)的表達(dá)式;
(2)如圖10-1,在第一象限內(nèi),拋物線E1上是否存在點(diǎn)Q,使得以點(diǎn)Q、B、為頂點(diǎn)的三角形為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由;
(3)如圖10-2,P為第一象限內(nèi)的拋物線E1上與點(diǎn)A不重合的一點(diǎn),連接OP并延長與拋物線E2相交于點(diǎn),求與的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A是函數(shù)y=(x<0)圖象上一點(diǎn),AO的延長線交函數(shù)y=(x>0,k是不等于0的常數(shù))的圖象于點(diǎn)C,點(diǎn)A關(guān)于y軸的對稱點(diǎn)為A′,點(diǎn)C關(guān)于x軸的對稱點(diǎn)為C′,連接CC′,交x軸于點(diǎn)B,連結(jié)AB,AA′,A′C′,若△ABC的面積等于6,則由線段AC,CC′,C′A′,A′A所圍成的圖形的面積等于( )
A. 8 B. 10 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知y是x的反比例函數(shù),當(dāng)x > 0時,y隨x的增大而減。垖懗一個滿足以上條件的函數(shù)表達(dá)式 . www.21-cn-jy.com
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列各式的變形中,正確的是( )
A. (−x−y)(−x+y)=x2−y2 B. −x= C. x2−4x+3=(x−2)2+1 D. x÷(x2+x)=+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com