(2009•同安區(qū)模擬)若關(guān)于x的一元二次方程x2+(m+1)x+
1
4
m2=0
有兩個不相等的實數(shù)根,則m的取值范圍是
m>-
1
2
m>-
1
2
分析:根據(jù)一元二次方程的根的判別式,建立關(guān)于m的不等式,求出m的取值范圍.
解答:解:因為關(guān)于x的一元二次方程x2+(m+1)x+
1
4
m2=0
有兩個不相等的實數(shù)根.
所以△=(m+1)2-4×
1
4
m2>0
解之得m>-
1
2

故答案為m>-
1
2
點評:本題考查了一元二次方程根的判別式的應用.
總結(jié):一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根;
(3)△<0?方程沒有實數(shù)根.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2009•同安區(qū)模擬)下列計算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•同安區(qū)模擬)(1)先化簡,再求值
x2+x
x2
x
x2-1
,其中x=3
(2)6sin45°-(2)0-
18

(3)解方程x2+2x-2=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•同安區(qū)模擬)已知:如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點P,過點P作⊙O的切線PD交AC于D.
(1)求證:PD⊥AC;
(2)若∠BAC=120°,BC=4
3
,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•同安區(qū)模擬)已知,如圖,AB、CD相交于點O,AC∥DB,AO=BO,E、F分別是OC、OD中點.
(1)求證:OC=OD;
(2)若∠DBE=90°,BD=3,BE=4,求四邊形AFBE的面積.

查看答案和解析>>

同步練習冊答案