如圖,□ABCD中,BC=4,BC邊上高為3,M為BC中點,若分別以B、C為圓心,BM長為半徑畫弧,交AB、CD于E、F兩點,則圖中陰影部分面積是________.
解析考點:扇形面積的計算;平行四邊形的性質(zhì).
分析:由平行四邊形的鄰角互補,可知:∠B與∠C的度數(shù)和為180°,而扇形BEM和扇形CMF的半徑相等,因此兩個扇形的面積和正好是一個半圓的面積,因此陰影部分的面積可用?ABCD和以BM為半徑的半圓的面積差來求得.
解:∵四邊形ABCD是平行四邊形
∴∠B+∠C=180°,
∵BC=4,BC邊上高為3,M為BC中點,
∴BM=CM=2,
S?ABCD=BC?高=4×3=12,
∴S扇形BEM+S扇形CMF=π?22=2π,
∴S陰影=S?ABCD-(S扇形BEM+S扇形CMF)=4×3-2π=12-2π.
故答案為:12-2π.
科目:初中數(shù)學(xué) 來源: 題型:
5 |
A、當旋轉(zhuǎn)角為90°時,四邊形ABEF一定為平行四邊形 |
B、在旋轉(zhuǎn)的過程中,線段AF與EC總相等 |
C、當旋轉(zhuǎn)角為45°時,四邊形BEDF一定為菱形 |
D、當旋轉(zhuǎn)角為45°時,四邊形ABEF一定為等腰梯形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com