(1)如圖,分別在線段AB和BA的延長線上取BD=AE=1.5cm,又EF=5cm,DG=4cm,GF=1cm,若GF的中點為點M,求AM和BM的長度.
(2)若線段a、b、c滿足:a:b:c=3:4:5,a+b+c=60,求線段2c-3a-
1
5
b的長.
考點:兩點間的距離
專題:
分析:(1)先根據(jù)BD=AE=1.5cm,又EF=5cm,DG=4cm,求出AF即BG的長,再根據(jù)GF=1cm求出AG及BF的長,再根據(jù)AM=AG+GM,BM=BF+MF即可得出結(jié)論;
(2)根據(jù)a:b:c=3:4:5設(shè)a=3x,b=4x,c=5x,再根據(jù)a+b+c=60求出x的值,進而得出a,b,c的值,代入代數(shù)式進行計算即可.
解答:解:(1)∵BD=AE=1.5cm,EF=5cm,DG=4cm,
∴AF=EF-AE=5-1.5=3.5(cm),BG=DG-BD=4-1.5=2.5(cm).
∵GF=1cm,
∴AG=AF-GF=3.5-1=2.5(cm),BF=BG-GF=2.5-1=1.5(cm).
∵GF的中點為點M,
∴GM=MF=0.5(cm),
∴AM=AG+GM=2.5+0.5=3(cm),BM=BF+MF=1.5+0.5=2(cm).

(2)∵a:b:c=3:4:5,
∴設(shè)a=3x,b=4x,c=5x,
∵a+b+c=60,
∴3x+4x+5x=60,解得x=5,
∴a=15,b=20,c=25,
∴2c-3a-
1
5
b=2×25-3×15-
1
5
×20=50-45-4=1.
點評:本題考查的是兩點間的距離,熟知各線段之間的和、差及倍數(shù)關(guān)系是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x-3
3-5x
中,x的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)活動中,我們發(fā)現(xiàn)了一些有趣的現(xiàn)象,可以用圖形來解決一些數(shù)的問題
現(xiàn)象一:如圖所示,5×5的正方形網(wǎng)格中,每個小正方形的邊長均為1.
(1)請求出圖中陰影部分正方形的面積和邊長,并用直尺和圓規(guī)把邊長在數(shù)軸上表示出來.
現(xiàn)象二:為求
1
2
+
1
22
+
1
23
+
1
24
+…
1
2n
的值,設(shè)計了如圖(1)所示的幾何圖形.

(2)請你利用這個幾何圖形求
1
2
+
1
22
+
1
23
+
1
24
+…
1
2n
的值為
 
.(結(jié)果保留n)
請你利用圖(2)再設(shè)計一個能求
1
2
+
1
22
+
1
23
+
1
24
+…
1
2n
的值的幾何圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,O為Rt△ABC的直角邊AC上一點,以O(shè)為圓心OC為半徑作⊙O切AB于點D,交邊AC于點E.
(1)若△BDC為等邊三角形,試求
AE
AD
的值;
(2)若AC=4,BC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△DBE均為等邊三角形,已知AB=6,BD=2
3
,現(xiàn)把△DBE繞點B逆時針旋轉(zhuǎn),所得三角形記為△D′BE′,連接AE′,當(dāng)∠AE′D′=60°時,點A到直線D′B的距離等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察下列各組數(shù)據(jù)并填空:
A.1,2,3,4,5.
.
xA
=
 
,sA2=
 
;
B.11,12,13,14,15.
.
xB
=
 
,sB2=
 
;
C.10,20,30,40,50.
.
xC
=
 
,sC2=
 
;
D.3,5,7,9,11.
.
xD
=
 
,sD2=
 

(2)從(1)的結(jié)果你能發(fā)現(xiàn)什么規(guī)律?請寫出來.
(3)已知一組數(shù)據(jù)x1,x2…,xn的平均數(shù)是
.
x
,方差是s2,則新的一組數(shù)據(jù)ax1+1,ax2+1,…,axn=1(a為常數(shù),a≠0)的平均數(shù)是
 
,方差是
 
.(用含a,s2的代數(shù)式表示)
(提示:s2=
1
n
[(x1-
.
x
2+…+(xn-
.
x
2].)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△PMN中,點E在PN上,點F在MN上,在PM上找一點Q,使△EFQ的周長最小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

底角為30°,周長為40cm的等腰梯形,設(shè)中位線為xcm,當(dāng)x為何值時,該梯形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是與“楊輝三角”有類似性質(zhì)的數(shù)字三角形表,你能按照發(fā)現(xiàn)的規(guī)律把這個三角形繼續(xù)寫下去嗎?和小伙伴比一比,看誰寫得多.試試看.

查看答案和解析>>

同步練習(xí)冊答案