【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是AB邊上的中點,點D、E分別在AC、BC邊上,且∠DOE=90°,DE交OC于P,下列結(jié)論:
①圖中的全等三角形共有3對;
②AD=CE;
③∠CDO=∠BEO;
④OC=DC+CE;
⑤△ABC的面積是四邊形DOEC面積的2倍.
正確的是 .(填序號)
【答案】①②③⑤
【解析】
試題分析:根據(jù)等腰三角形的性質(zhì),直角三角形斜邊上的中線性質(zhì),三角形內(nèi)角和定理,等腰三角形的性質(zhì)得出∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,求出∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,∠AOD=∠COE,∠COD=∠BOE,根據(jù)ASA推出△COE≌△AOD,△COD≌△BOE,根據(jù)全等三角形的性質(zhì)得出S△COE=S△AOD,AD=CE,∠CDO=∠BEO,再逐個判斷即可.
解:∵在等腰直角△ABC中,∠ACB=90°,O是AB邊上的中點,
∴∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,
∴∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,
∵∠DOE=90°,
∴∠AOD=∠COE=90°﹣∠COD,∠COD=∠BOE=90°﹣∠COE,
在△COE和△AOD中
∴△COE≌△AOD(ASA),
同理△COD≌△BOE,
∴S△COE=S△AOD,AD=CE,∠CDO=∠BEO,△ABC的面積是四邊形DOEC面積的2倍,
在△AOC和△BOC中
∴△AOC≌△BOC,
∵AD=CE,
∴CD+CE=AC,
∵∠COA=90°,
∴CO<AC,
∴OC=DC+CE錯誤;
即①②③⑤正確,④錯誤;
故答案為:①②③⑤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,點P為AB邊上一動點,若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)如圖,奧運福娃在5×5的方格(每小格邊長為1m)上沿著網(wǎng)格線運動.貝貝從A處出發(fā)去尋找B、C、D處的其它福娃,規(guī)定:向上向右走為正,向下向左走為負。如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中
(1)A→C( , );B→C( , );C→ (-3,-4);
(2)若貝貝的行走路線為A→B→C→D,請計算貝貝走過的路程;
(3)若貝貝從A處去尋找妮妮的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-2,-2),請在圖中標(biāo)出妮妮的位置E點.
(4)在(3)中貝貝若每走1m需消耗1.5焦耳的能量,則貝貝尋找妮妮過程中共需消耗多少焦耳的能量?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,直線MN⊥直線PQ,垂足為O,點A在射線OP上,點B在射線OQ上(A、B不與O點重合),點C在射線ON上且OC=2,過點C作直線∥PQ,點D在點C的左邊且CD=3.
(1) 直接寫出△BCD的面積.
(2) 如圖②,若AC⊥BC,作∠CBA的平分線交OC于E,交AC于F,則∠CEF與∠CFE有何數(shù)量關(guān)系?請說明理由.
(3) 如圖③,若∠ADC=∠DAC,點B在射線OQ上運動,∠ACB的平分線交DA的延長線于點H,在點B運動過程中的值是否變化?若不變,直接寫出其值;若變化,直接寫出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 李老師做了個長方形教具,其中一邊長為2a+b,另一邊長為a﹣b,則該長方形周長為( )
A. 6a+b B. 6a C. 3a D. 10a﹣b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】和數(shù)軸上的點一一對應(yīng)的是( )
A. 整數(shù) B. 實數(shù) C. 有理數(shù) D. 無理數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)有理數(shù)得乘法后,老師給同學(xué)們這樣一道題目:計算:49×(﹣5),看誰算的又快又對,有兩位同學(xué)的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對于以上兩種解法,你認(rèn)為誰的解法較好?
(2)上面的解法對你有何啟發(fā),你認(rèn)為還有更好的方法嗎?如果有,請把它寫出來;
(3)用你認(rèn)為最合適的方法計算:19×(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB為直角,∠AOC為銳角,且OM平分∠BOC,ON平分∠AOC.
(1)如果∠AOC=50°,求∠MON的度數(shù).
(2)如果∠AOC為任意一個銳角,你能求出∠MON的度數(shù)嗎?若能,請求出來,若不能,說明為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com