【題目】如圖,直線AB與CD相交于點(diǎn)O, ∠AOM=90°,
(1)如圖1,若OC平分∠AOM.求∠AOD的度數(shù);
(2)如圖2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度數(shù);
【答案】(1)∠AOD=135°;(2)∠MON=54°.
【解析】試題分析:(1)根據(jù)角平分線的定義求出∠AOC=45°,然后根據(jù)鄰補(bǔ)角的定義求解即可;
(2)設(shè)∠NOB=x°,∠BOC=4x°,根據(jù)角平分線的定義表示出∠COM=∠MON= ∠CON,再根據(jù)∠BOM列出方程求解x,然后求解即可.
(1)∵∠AOM=90°,OC平分∠AOM,∴∠AOC=∠AOM=x90°=45°,
∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°;
(2)∵∠BOC=4∠NOB,設(shè)∠NOB=x°,∠BOC=4x°,
∴∠CON=∠COB-∠BON=4x°-x°=3x°,∵OM平分∠CON,
∴∠COM=∠MON=∠CON=x°,∵∠BOM=x+x=90,∴x=36,
∴∠MON=x°=54°,即∠MON的度數(shù)為54°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題的個數(shù)有( 。
①如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.
②過直線外一點(diǎn)有且只有一條直線與這條直線平行.
③兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ).
④內(nèi)錯角相等,兩直線平行.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為(2,4),若點(diǎn)(﹣2,m),(3,n)在拋物線上,則m_____n(填“>”、“=”或“<”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算:①x2+x4=x6 ②2x+3y=5xy ③x6÷x3=x3 ④(x3)2=x6,其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某倉庫有甲、乙、丙三輛運(yùn)貨車,在滿載的情況下,甲車每小時可運(yùn)貨6噸,乙車每小時可運(yùn)貨10噸,某天只有乙車負(fù)責(zé)進(jìn)貨,甲車和丙車負(fù)責(zé)出貨.如圖是從早晨上班開始庫存量y(噸)與時間x(時)之間的函數(shù)圖象,OA段表示甲、乙兩車一起工作,AB段表示乙、丙兩車一起工作,且在工作期間,每輛車都是滿載的.
(1)m= .
(2)在滿載的情況下,丙車每小時可運(yùn)貨 噸.
(3)求AB段中庫存量y(噸)與時間x(時)之間的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式能用平方差公式計算的是( 。
A. (3a+b)(a﹣b) B. (3a+b)(﹣3a﹣b) C. (﹣3a﹣b)(﹣3a+b) D. (﹣3a+b)(3a﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用四舍五入法按要求對2.04607分別取近似值,其中錯誤的是( )
A. 2(精確到個位) B. 2.05(精確到百分位)
C. 2.1(精確到0.1) D. 2.0461(精確到0.0001)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com