【題目】等邊ABC 的邊長(zhǎng)為 4,AD BC 邊上的中線,F 是邊 AD 上的動(dòng)點(diǎn),E 是邊 AC 上的點(diǎn), 當(dāng) AE=2,且 EF+CF 取得最小值時(shí).

)能否求出ECF 的度數(shù)?_____(用填空);

)如果能,請(qǐng)你在圖中作出點(diǎn) F(保留作圖痕跡,不寫證明).并直接寫出ECF 的度 數(shù);如果不能,請(qǐng)說(shuō)明理由.

【答案】)能;(30°

【解析】

)過(guò)EEMBC,交ADN,連接CMADF,連接EF,推出MAB中點(diǎn),求出EM關(guān)于AD對(duì)稱,根據(jù)等邊三角形性質(zhì)求出∠ACM,即可.

)由()的分析可得結(jié)論.

)能;

)過(guò)EEMBC,交ADN,

AC=4,AE=2,

EC=2=AE,

AM=BM=2,

AM=AE,

ADBC邊上的中線,ABC是等邊三角形,

ADBC

EMBC,

ADEM

AM=AE,

EM關(guān)于AD對(duì)稱,

連接CMADF,連接EF

則此時(shí),EF+CF的值最小,

∵△ABC是等邊三角形,

∴∠ACB=60°AC=BC,

AM=BM,

∴∠ECF=ACB=30°,

故答案為30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,∠ACB90°,AC6cmBC8cm.點(diǎn)PA點(diǎn)出發(fā)沿A→C→B路徑運(yùn)動(dòng)到B點(diǎn),點(diǎn)QB點(diǎn)出發(fā)沿B→C→A路徑運(yùn)動(dòng)到A點(diǎn).點(diǎn)P和點(diǎn)Q分別以2cm/秒和3cm/秒的速度同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).在某時(shí)刻,分別過(guò)PQPEl于點(diǎn)EQFl于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(秒).

1)當(dāng)PC2QC時(shí),求t的值.

2)當(dāng)PECQFC全等時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根.

(1)求實(shí)數(shù)的取值范圍;

(2)若方程的兩實(shí)數(shù)根滿足,的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購(gòu)進(jìn)甲種玩具的件數(shù)與用150元購(gòu)進(jìn)乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?

2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過(guò)1000元,求商場(chǎng)共有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙OABC的外接圓,且AB=BC=CD,ABCD,連接BD.

(1)求證:BD是⊙O的切線;

(2)若AB=10,cosBAC=,求BD的長(zhǎng)及⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),A,B兩點(diǎn)的坐標(biāo)分別為(-2,0),(8,0),y軸交于點(diǎn)C(0,-4),連接BC,BC為一邊,點(diǎn)O為對(duì)稱中心作菱形BDEC,點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn)設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)Px軸的垂線L交拋物線于點(diǎn)Q,BD于點(diǎn)M.

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí)試探究m為何值時(shí),四邊形CQMD是平行四邊形?

(3)位于第四象限內(nèi)的拋物線上是否存在點(diǎn)N,使得△BCN的面積最大?若存在,求出N點(diǎn)的坐標(biāo),及△BCN面積的最大值若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】注意:為了使同學(xué)們更好地解答本題,我們提供了一種解題思路,你可以依照這個(gè)思路,填寫表格,并完成本題解答的全過(guò)程.如果你選用其他的解題方案,此時(shí),不必填寫表格, 只需按照解答題的一般要求,進(jìn)行解答即可.

某校八年級(jí)學(xué)生由距博物館 10km 的學(xué)校出發(fā)前往參觀,一部分同學(xué)騎自行車先走,過(guò)了20min 后,其余同學(xué)乘汽車出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車的速度是騎車同學(xué)速度 2 倍,求騎車同學(xué)的速度.

設(shè)騎車同學(xué)的速度為 xkm / h

)根據(jù)題意,利用速度、時(shí)間、路程之間的關(guān)系,用含有 x 的式子填寫下表:

速度(千米 / 時(shí))

所用時(shí)間(時(shí) )

所走的路程(千米)

騎自行車

x

10

乘汽車

10

)列出方程,并求出問(wèn)題的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過(guò)點(diǎn)A(1,3)、B(3,m).

(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,等腰直角三角形ABC中,∠BAC=90°,BAAC,點(diǎn)E、F是線段BC上兩動(dòng)點(diǎn)且∠EAF45°,請(qǐng)寫出BE、EFFC之間的等量關(guān)系并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案