(2006•南通)如圖,已知正方形ABED與正方形BCFE,現(xiàn)從A,B,C,D,E,F(xiàn)六個點中任取三個點,使得這三個點能作為直角三角形的三個頂點,則這樣的直角三角形共有( )

A.10個
B.12個
C.14個
D.16個
【答案】分析:根據(jù)正方形的性質(zhì)和直角三角形的判定方法進行判定,連接AE得△ABE、△ADE,連接BD得△ABD、△BED,同理連接CE、BF、A、FCD得到△BCE、△CFE、△BCF、△BEF、△ACF、△ADF、△ACD、△CDF、△AEC、△DBF.
解答:解:可得到14個直角三角形,分別為△ABE、△ADE、△ABD、△BED、△BCE、△CFE、△BCF、△BEF、△ACF、△ADF、△ACD、△CDF、△AEC、△DBF.
故選C.
點評:此題主要考查了正方形的性質(zhì)(正方形的對交線相等平分且垂直)及直角三角形的判定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標系中,O為坐標原點,B(5,0),M為等腰梯形OBCD底邊OB上一點,OD=BC=2,∠DMC=∠DOB=60度.
(1)求點D,B所在直線的函數(shù)表達式;
(2)求點M的坐標;
(3)∠DMC繞點M順時針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點D1,C1依次與點D,C對應),射線MD1交邊DC于點E,射線MC1交邊CB于點F,設DE=m,BF=n.求m與n的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市順義區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標系中,O為坐標原點,B(5,0),M為等腰梯形OBCD底邊OB上一點,OD=BC=2,∠DMC=∠DOB=60度.
(1)求點D,B所在直線的函數(shù)表達式;
(2)求點M的坐標;
(3)∠DMC繞點M順時針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點D1,C1依次與點D,C對應),射線MD1交邊DC于點E,射線MC1交邊CB于點F,設DE=m,BF=n.求m與n的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江蘇省南通市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標系中,O為坐標原點,B(5,0),M為等腰梯形OBCD底邊OB上一點,OD=BC=2,∠DMC=∠DOB=60度.
(1)求點D,B所在直線的函數(shù)表達式;
(2)求點M的坐標;
(3)∠DMC繞點M順時針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點D1,C1依次與點D,C對應),射線MD1交邊DC于點E,射線MC1交邊CB于點F,設DE=m,BF=n.求m與n的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江蘇省南通市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標系中,O為坐標原點,B(5,0),M為等腰梯形OBCD底邊OB上一點,OD=BC=2,∠DMC=∠DOB=60度.
(1)求點D,B所在直線的函數(shù)表達式;
(2)求點M的坐標;
(3)∠DMC繞點M順時針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點D1,C1依次與點D,C對應),射線MD1交邊DC于點E,射線MC1交邊CB于點F,設DE=m,BF=n.求m與n的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江蘇省南通市中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2006•南通)如圖,直線y=kx(k>0)與雙曲線y=交于A(x1,y1),B(x2,y2)兩點,則2x1y2-7x2y1的值等于   

查看答案和解析>>

同步練習冊答案