精英家教網(wǎng)(1)在平面直角坐標系中畫出四邊形ABCD.其中 A(0,2),B(-1,0),C(5,0),D(3,4).
(2)將四邊形ABCD向下平移2個單位,再向左平移1個單位,寫出平移后的四邊形A1B1C1D1各頂點的坐標.
(3)求出四邊形ABCD的面積.
分析:(1)根據(jù)題意確定各點位置即可;
(2)利用平移的性質(zhì)得出各對應點坐標即可;
(3)將四邊形分割為兩個三角形和一個梯形求出面積即可.
解答:精英家教網(wǎng)解:(1)如圖所示:四邊形ABCD即為所求;

(2)如圖所示:四邊形A1B1C1D1各頂點分別為:(-1,0),(-2,-2),(4,-2),(2,2);

(3)四邊形ABCD的面積為:
1
2
×1×2+
1
2
(2+4)×3+
1
2
×4×2=14.
點評:此題主要考查了平移變換的性質(zhì)以及四邊形面積求法,得出對應點坐標是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,點P不與點0、點A重合.連接CP,過點P作PD交AB于點D.
(1)求點B的坐標;
(2)當點P運動什么位置時,△OCP為等腰三角形,求這時點P的坐標;
(3)當點P運動什么位置時,使得∠CPD=∠OAB,且
BD
BA
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖(1),在平面直角坐標xOy中,邊長為2的等邊△OAB的頂點B在第一象限,頂點A在x軸的正半軸上.另一等腰△OCA的頂點C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動點P、Q分別從A、O兩點同時出發(fā),點Q以每秒1個單位的速度沿OC向點C運動,點P以每秒3個單位的速度沿A→O→B運動,當其中一個點到達終點時,另一個點也隨即停止.
(1)求在運動過程中形成的△OPQ的面積S與運動的時間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點A除外)存在點D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點D的坐標;
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點M、N,連接MN.將∠MCN繞著C點旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,以(5,1)為圓心,以2個單位長度為半徑的⊙A交x軸于點B、C,
(1)將⊙A向左平移
3
3
個單位長度與y軸首次相切得到⊙A′,此時點A′的坐標為
(2,1)
(2,1)
,陰影部分的面積S=
6
6
;
(2)BC=
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標中,邊長為1的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當A點第一次落在直線y=x上時停止旋轉(zhuǎn).旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖1).
(1)求邊AB在旋轉(zhuǎn)過程中所掃過的面積;
(2)設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論;
(3)設(shè)MN=m,當m為何值時△OMN的面積最小,最小值是多少?并直接寫出此時△BMN內(nèi)切圓的半徑.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(8,0),D點坐標為(0,6),則AC長為
10
10

查看答案和解析>>

同步練習冊答案