如圖,△ABC中,AB=AC,AD⊥AB交BC于點D,且∠CAD=30°,CD=3,則BD=
6
6
分析:根據(jù)等腰三角形的性質求出∠B=∠C=30°,根據(jù)等角對等邊可得AD=CD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半解答.
解答:解:∵AB=AC,
∴∠CAD=30°,
∴∠B=∠C=
1
2
(180°-90°-30°)=30°,
∴AD=CD=3,
在Rt△ABD中,BD=2AD=2×3=6.
故答案為:6.
點評:本題考查了直角三角形30°角所對的直角邊等于斜邊的一半的性質,等腰三角形的性質,熟記各性質是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案