【題目】如圖①,C地位于A,B兩地之間,甲步行直接從C地前往B地,乙騎自行車由C地先回A地,再從A地前往B地(在A地停留時間忽略不計).已知兩人同時出發(fā)且速度不變,乙的速度是甲的2.5倍,設出發(fā)xmin后甲、乙兩人離C地的距離分別為y1m,y2m,圖②中線段OM表示y1與x的函數(shù)圖象.

(1)甲的速度為m/min,乙的速度為m/min;
(2)在圖②中畫出y2與x的函數(shù)圖象;
(3)求甲乙兩人相遇的時間;
(4)在上述過程中,甲乙兩人相距的最遠距離為m.

【答案】
(1)80;200
(2)解:600÷200=3(min),

600×2÷200=6(min).

2400÷200+6=18(min).

∴y2與x的函數(shù)圖象過點(0,0)、(3,600)、(6,0)、(18,2400).

畫出圖形如圖所示.


(3)解:設甲乙兩人相遇的時間為xmin,

依題意得:80x=200(x﹣6),

解得:x=10.

答:甲乙兩人相遇的時間為10min


(4)960
【解析】解:(1)甲的速度為:2400÷30=80(m/min);
乙的速度為:80×2.5=200(m/min).
所以答案是:80;200.(4)∵乙的速度>甲的速度,
∴當x=3時,乙達到A地,此時甲乙兩人間距可能最遠,
3×(80+200)=840(m);
當x=18時,甲乙兩人間距為:
2400﹣80×18=960(m).
∵960>840,
∴甲乙兩人相距的最遠距離為960m.
所以答案是:960.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)如圖1,在△ABC中,AD是中線,分別過點B、C作AD及其延長線的垂線BE、CF,垂足分別為點E、F.求證:BE=CF.

(2)如圖2,在△ABC中,AB=2,AC=1,以AB為直徑的圓與AC相切,與邊BC交于點D,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如表記錄了一名球員在罰球線上投籃的結(jié)果.那么,這名球員投籃一次,投中的概率約為(精確到0.1).

投籃次數(shù)(n)

50

100

150

200

250

300

500

投中次數(shù)(m)

28

60

78

104

123

152

251

投中頻率(m/n)

0.56

0.60

0.52

0.52

0.49

0.51

0.50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+bx+4經(jīng)過點(2,-2).
(1)求出這個拋物線的解析式;
(2)求這個拋物線的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小紅、小兵玩捉迷藏游戲,小紅、小兵可以在A,B,C三個地點中任意一處藏身,小明去尋找他們.
(1)求小明在B處找到小紅的概率;
(2)求小明在同一地點找到小紅和小兵的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計圖(如圖),根據(jù)圖表中的信息解答下列問題:

(1)求全班學生人數(shù)和m的值.
(2)直接學出該班學生的中考體育成績的中位數(shù)落在哪個分數(shù)段.
(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.

分組

分數(shù)段(分)

頻數(shù)

A

36≤x<41

2

B

41≤x<46

5

C

46≤x<51

15

D

51≤x<56

m

E

56≤x<61

10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰Rt△,如此繼續(xù)下去,直到所畫直角三角形的斜邊與△ABC的BC邊在同一直線上時為止,此時,這個直角三角形的斜邊長為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是(

A.40°
B.50°
C.60°
D.70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y= x+2 與x軸,y軸分別交于M,N兩點,O為坐標原點,將△OMN沿直線MN翻折后得到△PMN,則點P的坐標為

查看答案和解析>>

同步練習冊答案