【題目】小明和小紅、小兵玩捉迷藏游戲,小紅、小兵可以在A,B,C三個地點中任意一處藏身,小明去尋找他們.
(1)求小明在B處找到小紅的概率;
(2)求小明在同一地點找到小紅和小兵的概率.
【答案】
(1)解:∵小紅、小兵可以在A、B、C三個地點中任意一處藏身,
∴小明在B處找到小紅的概率=
(2)解:畫樹形圖得:
由樹形圖可知小明在同一地點找到小紅和小兵的概率= =
【解析】(1)由題意可知有三處可以藏身,所以小明在B處找到小紅的概率為其中的三分之一;(2)根據(jù)題意畫樹狀圖,然后根據(jù)樹狀圖求得所有等可能的結果與小明在同一地點找到小紅和小兵的情況,然后根據(jù)概率公式求解即可.
【考點精析】解答此題的關鍵在于理解列表法與樹狀圖法的相關知識,掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率.
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,ABCD中,BC=8cm,CD=4cm,∠B=60°,點M從點D出發(fā),沿DA方向勻速運動,速度為2cm/s,點N從點B出發(fā),沿BC方向勻速運動,速度為1cm/s,過M作MF⊥CD,垂足為F,延長FM交BA的延長線于點E,連接EN,交AD于點O,設運動時間為t(s)(0<t<4),解答下列問題:
(1)當t為何值時,△AEM≌△DFM?
(2)連接AN,MN,設四邊形ANME的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使四邊形ANME的面積是ABCD面積的 ?若存在,求出相應的t值,若不存在,說明理由;
(4)連接AC,交EN于點P,當EN⊥AD時,求線段OP的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等腰三角形ABC中,AB=AC,O為AB上一點,以O為圓心,OB長為半徑的圓交BC于D,DE⊥AC交AC于E.
(1)求證:DE是⊙O的切線;
(2)若⊙O與AC相切于F,AB=AC=8cm,sinA= ,求⊙O的半徑的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,AD= ,AE⊥BD,垂足是E.點F是點E關于AB的對稱點,連接AF,BF.
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設平移的距離為m(平移距離指點B沿BD方向所經(jīng)過的線段長度).當點F分別平移到線段AB、AD上時,直接寫出相應的m的值;
(3)如圖②,將△ABF繞點B順時針旋轉一個角α(0°<α<180°),記旋轉中的△ABF為△A′BF′,在旋轉過程中,設A′F′所在的直線與直線AD交于點P.與直線BD交于點Q.是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等邊三角形.
(1)動手操作:如圖1,點D在△ABC內(nèi),且∠BDC=150°,CD=1,BD= , 把△BCD繞著點C順時針旋轉,使點B旋轉到點A,得到△AEC.
①依題意補全圖1;(確認無誤后,請用黑色水筆描黑)
②連接DE,則線段DE= , AD=;
(2)應用拓展:如圖2,點D在△ABC外,且CD=3,BD=4,AD=5,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,C地位于A,B兩地之間,甲步行直接從C地前往B地,乙騎自行車由C地先回A地,再從A地前往B地(在A地停留時間忽略不計).已知兩人同時出發(fā)且速度不變,乙的速度是甲的2.5倍,設出發(fā)xmin后甲、乙兩人離C地的距離分別為y1m,y2m,圖②中線段OM表示y1與x的函數(shù)圖象.
(1)甲的速度為m/min,乙的速度為m/min;
(2)在圖②中畫出y2與x的函數(shù)圖象;
(3)求甲乙兩人相遇的時間;
(4)在上述過程中,甲乙兩人相距的最遠距離為m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了促進營業(yè)額不斷增長,某大型超市決定購進甲、乙兩種商品,已知甲種商品每件進價為150元,售價為168元;乙種商品每件進價為120元,售價為140元,該超市用42000元購進甲、乙兩種商品,銷售完后共獲利5600元.
(1)該超市購進甲、乙兩種商品各多少件?
(2)超市第二次以原價購進甲、乙兩種商品共400件,且購進甲種商品的件數(shù)多于乙種商品的件數(shù),要使第二次經(jīng)營活動的獲利不少于7580元,共有幾種進貨方案?寫出利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解全校學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調(diào)查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.同時把調(diào)查得到的結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學生?通過計算補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,“公交車”部分所對應的圓心角是多少度?
(3)若全校有1600名學生,估計該校乘坐私家車上學的學生約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在課外學習時遇到這樣一個問題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1 , b1 , c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2 , b2 , c2是常數(shù))滿足a1+a2=0,b1=b2 , c1+c2=0,則稱這兩個函數(shù)互為“旋轉函數(shù)”.
求函數(shù)y=﹣x2+3x﹣2的“旋轉函數(shù)”.
小明是這樣思考的:由函數(shù)y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根據(jù)a1+a2=0,b1=b2 , c1+c2=0,求出a2 , b2 , c2 , 就能確定這個函數(shù)的“旋轉函數(shù)”.
請參考小明的方法解決下面問題:
(1)寫出函數(shù)y=﹣x2+3x﹣2的“旋轉函數(shù)”;
(2)若函數(shù)y=﹣x2+ mx﹣2與y=x2﹣2nx+n互為“旋轉函數(shù)”,求(m+n)2015的值;
(3)已知函數(shù)y=﹣ (x+1)(x﹣4)的圖象與x軸交于點A、B兩點,與y軸交于點C,點A、B、C關于原點的對稱點分別是A1 , B1 , C1 , 試證明經(jīng)過點A1 , B1 , C1的二次函數(shù)與函數(shù)y=﹣ (x+1)(x﹣4)互為“旋轉函數(shù).”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com