【題目】如圖,在正方形ABCD中,點(diǎn)E是對(duì)角線BD上任意一點(diǎn),過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,作EG⊥CD于點(diǎn)G,若正方形ABCD的周長(zhǎng)為a,則四邊形EFCG的周長(zhǎng)為_____.
【答案】
【解析】
由ABCD為正方形,根據(jù)正方形的性質(zhì)可知四條邊相等,且∠CDB=∠CBD=45°,進(jìn)而得到△DEG與△BEF都是等腰直角三角形,即EG與DG相等,EF與BF相等,由根據(jù)三個(gè)角為直角的四邊形為矩形得到EFCG為矩形,從而得到對(duì)邊EG與FC相等,EF與GC相等,故把四邊形EFCG的周長(zhǎng)轉(zhuǎn)換為正方形的兩條邊相加,即為正方形周長(zhǎng)的一半,由正方形的周長(zhǎng)為a即可求出四邊形EFCG的周長(zhǎng).
∵ABCD為正方形,
∴∠DBC=∠BDC=45°,AB=BC=CD=AD,
又∵EF⊥BC,EG⊥CD,
∴∠EFC=∠EGC=90°,又∠C=90°,
∴四邊形EFCG為矩形,
∴EG=FC,EF=GC,
∵△BEF和△EDG都為等腰直角三角形,
∴DG=EG,EF=BF,
則四邊形EFCG的周長(zhǎng)=EF+FC+CG+EG
=DG+GC+CF+FB=DC+BC=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在第1個(gè)△A1BC中,∠B=30°,A1B=CB;在邊A1B上任取一點(diǎn)D,延長(zhǎng)CA1到A2,使A1A2=A1D,得到第2個(gè)△A1A2D,在邊A2D上任取一點(diǎn)E,延長(zhǎng)A1A2到A3,使A2A3=A2E,得到第3個(gè)△A2A3E,…按此做法繼續(xù)下去,則第n個(gè)三角形中以An為頂點(diǎn)的內(nèi)角度數(shù)是______。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過(guò)點(diǎn)A、B,直線l1、l2交于點(diǎn)C.
(1)求直線l2的函數(shù)解析式;
(2)求△ADC的面積;
(3)在直線l2上是否存在點(diǎn)P,使得△ADP面積是△ADC面積的2倍?如果存在,請(qǐng)求出P坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3)。雙曲線的圖像經(jīng)過(guò)BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE。
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷
A.甲正確,乙錯(cuò)誤 B.乙正確,甲錯(cuò)誤 C.甲、乙均正確 D.甲、乙均錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的大正方形中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫(huà)出與△ABC關(guān)于直線l成軸對(duì)稱(chēng)的△AB′C′;
(2)△ABC的面積為 ;
(3)△ABC的周長(zhǎng)為 ;(保留根號(hào))
(4)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短.(保留痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交CD的延長(zhǎng)線于點(diǎn)N,連接MD,AN.
(1)求證:△NDE≌△MAE;
(2)求證:四邊形AMDN是平行四邊形;
(3)當(dāng)AM的值為何值時(shí),四邊形AMDN是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=∠ACB,BD、CD、BE分別平分△ABC的內(nèi)角∠ABC、外角∠ACP、外角∠MBC.以下結(jié)論:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠A+2∠BEC=180°;⑤DB平分∠ADC.其中正確的結(jié)論有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com