【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(5,1). ①畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1 , 并寫出點(diǎn)C1的坐標(biāo);
②連結(jié)BC1 , 在坐標(biāo)平面的格點(diǎn)上確定一個(gè)點(diǎn)P,使△B C1P是以B C1為底的等腰直角三角形,畫出△B C1P,并寫出所有P點(diǎn)的坐標(biāo).

【答案】解:①如圖,△A1B1C1 , 即為所求作三角形,點(diǎn)C1的坐標(biāo)為(﹣5,1);
②如圖,點(diǎn)P的坐標(biāo)為(﹣1,﹣1)或(﹣3,5)
【解析】①分別作出點(diǎn)A、B、C關(guān)于y軸的對(duì)稱點(diǎn),即可得△A1B1C1及C1的坐標(biāo);②作出BC1的中垂線,在中垂線上根據(jù)勾股定理逆定理即可確定點(diǎn)P位置.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識(shí),掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D( ,0),E(2 ,0),F(xiàn)( ,﹣ ).

(1)他們將△ABC繞C點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)45°得到△A1B1C1 . 請(qǐng)你寫出點(diǎn)A1 , B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)45°,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=2 x2+bx+c上,請(qǐng)你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45°,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=x2上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo),請(qǐng)你直接寫出點(diǎn)P的所有坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖①,BP、CP分別平分△ABC的外角∠CBD、∠BCE,BQ、CQ分別平分∠PBC、∠PCB,BM、CN分別是∠PBD、∠PCE的角平分線.

(1)當(dāng)∠BAC=40°時(shí),∠BPC=   ,∠BQC=   ;

(2)當(dāng)BM∥CN時(shí),求∠BAC的度數(shù);

(3)如圖,當(dāng)∠BAC=120°時(shí),BM、CN所在直線交于點(diǎn)O,直接寫出∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一張圓心角為45°的扇形紙板剪得一個(gè)邊長(zhǎng)為1的正方形,則扇形紙板的面積是cm2(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過(guò)原點(diǎn)O及點(diǎn)A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點(diǎn)D.點(diǎn)P從點(diǎn)O出發(fā),以每秒 個(gè)單位長(zhǎng)度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P移動(dòng)到點(diǎn)D時(shí),求出此時(shí)t的值;
(2)當(dāng)t為何值時(shí),△PQB為直角三角形;
(3)已知過(guò)O、P、Q三點(diǎn)的拋物線解析式為y=﹣ (x﹣t)2+t(t>0).問(wèn)是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“五一”假期,某火車客運(yùn)站旅客流量不斷增大,旅客往往需要長(zhǎng)時(shí)間排隊(duì)等候檢票.經(jīng)調(diào)查發(fā)現(xiàn),在車站開始檢票時(shí),有640人排隊(duì)檢票.檢票開始后,仍有旅客繼續(xù)前來(lái)排隊(duì)檢票進(jìn)站.設(shè)旅客按固定的速度增加,檢票口檢票的速度也是固定的.檢票時(shí),每分鐘候車室新增排隊(duì)檢票進(jìn)站16人,每分鐘每個(gè)檢票口檢票14人.已知檢票的前a分鐘只開放了兩個(gè)檢票口.某一天候車室排隊(duì)等候檢票的人數(shù)y(人)與檢票時(shí)間x(分鐘)的關(guān)系如圖所示.

(1)求a的值.
(2)求檢票到第20分鐘時(shí),候車室排隊(duì)等候檢票的旅客人數(shù).
(3)若要在開始檢票后15分鐘內(nèi)讓所有排隊(duì)的旅客都能檢票進(jìn)站,以便后來(lái)到站的旅客隨到隨檢,問(wèn)檢票一開始至少需要同時(shí)開放幾個(gè)檢票口?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,AOB為等邊三角形,B(2,0),直線l:y=kx+b經(jīng)過(guò)點(diǎn)B,點(diǎn)Cx軸正半軸上的一動(dòng)點(diǎn),以線段AC為邊在第一象限作等邊ACD.

(1)直接寫出點(diǎn)A的坐標(biāo):A(   ,   ),當(dāng)直線l經(jīng)過(guò)點(diǎn)A時(shí),求直線BA的表達(dá)式.

(2)當(dāng)直線l經(jīng)過(guò)點(diǎn)D時(shí),直線與y軸相交于點(diǎn)F,隨著點(diǎn)C的變化,點(diǎn)F的位置是否發(fā)生變化?若沒(méi)有變化,求出此時(shí)點(diǎn)F的坐標(biāo).;若有變化,請(qǐng)說(shuō)明理由.

(3)當(dāng)直線與線段OA相交與點(diǎn)E時(shí),如果直線lAOB的面積分為1:2兩部分,求出此時(shí)點(diǎn)E的坐標(biāo).

(4)若點(diǎn)C的坐標(biāo)為(4,0)時(shí),直線l與線段AD有交點(diǎn),請(qǐng)直接寫出此時(shí)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小敏同學(xué)想測(cè)量一棵大樹的高度.她站在B處仰望樹頂,測(cè)得仰角為30°,再往大樹的方向前進(jìn)4m,測(cè)得仰角為60°,已知小敏同學(xué)身高(AB)為1.6m,則這棵樹的高度為( )(結(jié)果精確到0.1m, ≈1.73).

A.3.5m
B.3.6m
C.4.3m
D.5.1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù) y=﹣2x﹣2

(1)根據(jù)關(guān)系式畫出函數(shù)的圖象

(2)求出圖象與 x 軸、y 軸的交點(diǎn) A、B 的坐標(biāo).

(3)求 A、B 兩點(diǎn)間的距離.

(4)y 的值隨 x 值的增大怎樣變化?

查看答案和解析>>

同步練習(xí)冊(cè)答案