在矩形ABCD中.點E為BC邊上的一動點,沿AE翻折,ABE與AFE重合,射線AF與直線CD交于點G.
(1)如圖1,消退點E為BC中點時,線段AB、AG、GD之間具有怎樣的數(shù)量關(guān)系?并給出證明;
(2)如圖2,當(dāng)BE:EC=3:1時,上問中的結(jié)論是否改變?寫出證明過程;

解:(1)AG+GD=2AB.
證明:連接EG,
∵E是BC的中點,
∴BE=CE,
∵將△ABE沿AE折疊后得到△AFE,
∴BE=EF,
∴EF=EC,
∵EG=EG,∠C=∠EFG=90°,
∴△ECG≌△EFG,
∴FG=CG,
∴AG=AF+FG=AB+FG,GD=DC-GC=AB-GC,
AG+GD=(AB+FG)+(AB-GC)=2AB.

(2)結(jié)論改變.
證明:過點E作EH⊥BC,分別交AG和AD于點H和I,
則HE∥GC,∠G=∠AHE,
又∠ADG=∠EFH=90°,
∴△ADG∽△EFH,
①,
又BE:EC=3:1,
∴EH=EI+HI=AB+HI=AB+DG,
代入①式得:=,
整理得:3AG=4AB+3GD.

分析:(1)根據(jù)翻折的性質(zhì)得出BE=EF,∠B=∠EFA,利用三角形全等的判定得△ECG≌△EFG,即可得出GC=FG,繼而得出AG+GD=2AB;
(2)結(jié)論改變,過點E作EH⊥BC,分別交AG和AD于點H和I,則有△ADG∽△EFH,繼而有,EH=AB+DG,代入即可求出AB、GD和AG的關(guān)系.
點評:此題主要考查了矩形的性質(zhì)、翻折變換、全等三角形和相似三角形的判定與性質(zhì)等知識,難度較大,其中第二問的解題關(guān)鍵是正確作出輔助線,注意這類題目的積累和思考.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

1、如圖,在矩形ABCD中,點E是BC上一點,AE=AD,DF⊥AE,垂足為F.線段DF與圖中的哪一條線段相等?先將你猜想出的結(jié)論填寫在下面的橫線上,然后再加以證明.即DF=
AB
.(寫出一條線段即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖所示,在矩形ABCD中,點E在BC上,AE=AD,DF⊥AE于F,若AB=3,BC=5,則四邊形DFEC的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AD,BC上,BE⊥EF,AB=6cm,AD=11cm(其中AE>DE),DF=4cm,求BE的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,點P在矩形ABCD內(nèi),若AB=4,BC=6,AE=CG=3,BF=DH=4,四邊形AEPH的面積為5,求四邊形PFCG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰州)如圖,在矩形ABCD中,點P在邊CD上,且與C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,M為PQ中點.
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點P在邊CD上運動,設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點M的位置也在變化.當(dāng)點M落在矩形ABCD外部時,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案