(2009•長春)如圖,在平行四邊形ABCD中,∠BAD=32°.分別以BC、CD為邊向外作△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延長AB交邊EC于點(diǎn)G,點(diǎn)G在E、C兩點(diǎn)之間,連接AE、AF.
(1)求證:△ABE≌△FDA;
(2)當(dāng)AE⊥AF時(shí),求∠EBG的度數(shù).

【答案】分析:(1)根據(jù)已知及全等三角形的判定方法進(jìn)行分析,從而不難求得結(jié)論;
(2)根據(jù)第一問的結(jié)論及已知可得到:∠EBG=∠BEA+∠BAE.
解答:(1)證明:在平行四邊形ABCD中,AB=DC,
又∵DF=DC,
∴AB=DF.
同理EB=AD.
在平行四邊形ABCD中,∠ABC=∠ADC,
又∵∠EBC=∠CDF,
∴∠ABE=360°-∠ABC-∠EBC,∠ADF=360°-∠ADC-∠CDF,
∴∠ABE=∠ADF.
∴△ABE≌△FDA(SAS).

(2)即:∵△ABE≌△FDA,
∴∠AEB=∠DAF.
∵∠EBG=∠EAB+∠AEB,
∴∠EBG=∠DAF+∠EAB,
∵AE⊥AF,
∴∠EAF=90°.
∵∠BAD=32°,
∴∠EAF-∠DAB=90°-32°=58°.
∴∠EBG=58°.
點(diǎn)評:本題主要考查平行四邊形的性質(zhì)及全等三角形的判定方法的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•長春)如圖,拋物線y=ax2-x-與x軸正半軸交于點(diǎn)A(3,0),以O(shè)A為邊在x軸上方作正方形OABC,延長CB交拋物線于點(diǎn)D,再以BD為邊向上作正方形BDEF.
(1)求a的值;
(2)求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2009•長春)如圖,點(diǎn)P的坐標(biāo)為(2,),過點(diǎn)P作x軸的平行線交y軸于點(diǎn)A,交雙曲線y=(x>0)于點(diǎn)N;作PM⊥AN交雙曲線y=(x>0)于點(diǎn)M,連接AM.已知PN=4.
(1)求k的值.(2)求△APM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省溫州市洞頭縣中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•長春)如圖,點(diǎn)P的坐標(biāo)為(2,),過點(diǎn)P作x軸的平行線交y軸于點(diǎn)A,交雙曲線y=(x>0)于點(diǎn)N;作PM⊥AN交雙曲線y=(x>0)于點(diǎn)M,連接AM.已知PN=4.
(1)求k的值.(2)求△APM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省泰州市九年級下學(xué)期六校聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•長春)如圖,拋物線y=ax2-x-與x軸正半軸交于點(diǎn)A(3,0),以O(shè)A為邊在x軸上方作正方形OABC,延長CB交拋物線于點(diǎn)D,再以BD為邊向上作正方形BDEF.
(1)求a的值;
(2)求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年吉林省長春市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•長春)如圖,點(diǎn)P的坐標(biāo)為(2,),過點(diǎn)P作x軸的平行線交y軸于點(diǎn)A,交雙曲線y=(x>0)于點(diǎn)N;作PM⊥AN交雙曲線y=(x>0)于點(diǎn)M,連接AM.已知PN=4.
(1)求k的值.(2)求△APM的面積.

查看答案和解析>>

同步練習(xí)冊答案