精英家教網 > 初中數學 > 題目詳情

【題目】閱讀理解:在平面直角坐標系中,對于任意兩點非常距離,給出如下定義:

,則點與點非常距離;

,則點與點非常距離

例如:點,點,因為,所以點與點非常距離,也就是圖1中線段與線段長度的較大值(點為垂直于軸的直線與垂直于軸的直線的交點).

(1)已知點軸上的一個動點.

若點(0,3),則點與點非常距離   ;

若點與點非常距離2,則點的坐標為   ;

直接寫出點與點非常距離的最小值為   ;

(2)已知點(0,1),點是直線上的一個動點,如圖2,求點與點非常距離的最小值及相應的點的坐標.

【答案】(1)①3;②B(0,2)或(0,﹣2);③;(2)最小值為

【解析】

(1)①根據若,則點與點非常距離解答即可;
②根據點B位于y軸上,可以設點B的坐標為.非常距離的定義可以確定,據此可以求得y的值;
③設點B的坐標為.因為,所以點A與點B非常距離最小值為;

(2)設點C的坐標為.根據材料,則點與點非常距離”,此時,列出再求解,據此可以求得最小值和點C的坐標.

解:(1) ,.

,∴點A與點B非常距離3.

By軸上的一個動點,∴設點B的坐標為(0,y).

.

解得,y=2y=﹣2;

∴點B的坐標是(0,2)或(0,﹣2).

A與點B非常距離的最小值為

(2)如圖2,取點C與點D非常距離的最小值時,

需要根據運算定義,則點與點非常距離解答,此時.

是直線上的一個動點,點D的坐標是(0,1),

∴設點的坐標為,則

,.

,∴點C與點D非常距離的最小值為

此時

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖①,在平面直角坐標中,邊長為2的正方形OABC的兩頂點A,C分別在y軸、x軸的正半軸上,O為坐標原點.現將正方形OABC繞O點順時針旋轉,當A點第一次落在直線y=x上時停止旋轉,旋轉過程中,AB邊交直線y=x于點M,BC邊交x軸于點N.

(1)當A點第一次落在直線y=x上時,求點A所經過的路線長;
(2)在旋轉過程中,當MN和AC平行時,求正方形OABC旋轉的度數;
(3)設△MBN的周長為p,在旋轉正方形OABC的過程中,p值是否有變化?請證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,點DE,F分別是ABBC,CA的中點,AH是邊BC上的高.

1)試判斷線段DEFH之間的數量關系,并說明理由;

2)求證:∠DHF=DEF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四邊形ABCD為矩形,G是BC上的任意一點,DE⊥AG于點E.

(1)如圖1,若AB=BC,BF∥DE,且交AG于點F,求證:AF﹣BF=EF;
(2)如圖2,在(1)條件下,AG= BG,求
(3)如圖3,連EC,若CG=CD,DE=2,GE=1,則CE=(直接寫出結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016年中考前,張老師為了解全市初三男生體育考試項目的選擇情況(每人限選一項),在全市范圍內隨機調查了部分初三男生,將調查結果分成五類:A.推實心球(2kg);B.立定跳遠;C.半場運球;D.跳繩;E.其他,并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖解答下列問題:
(1)將上面的條形統(tǒng)計圖補充完整;
(2)假定全市初三畢業(yè)學生中有32000名男生,試估計全市初三男生中選半場運球的人數有多少人;
(3)甲、乙兩名初三男生在上述選擇率較高的三個項目:B.立定跳遠;C.半場運球;D.跳繩中各選一項,同時選擇半場運球、立定跳遠的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結果.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在數軸上點A表示的有理數為,點B表示的有理數為6,點P從點A出發(fā)以每秒2個單位長度的速度由運動,同時,點Q從點B出發(fā)以每秒1個單位長度的速度由運動,當點Q到達點APQ兩點停止運動,設運動時間為單位:秒

1)求時,求點P和點Q表示的有理數;

2)求點P與點Q第一次重合時的t值;

3)當t的值為多少時,點P表示的有理數與點Q表示的有理數距離是3個單位長度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點F是等邊△ABC邊CA延長線上一點,點D是線段BF上一點,且BC=CD,CD交AB于點E,若AE=6,CE=14,則AF=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD的邊長為8,點E為正方形邊上一點,連接BE,且BE=10,則AE的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC,O為AC中點,點P在AC上,若OP= ,tan∠A= ,∠B=120°,BC=2 ,則AP=

查看答案和解析>>

同步練習冊答案