【題目】如圖,在ABC中,AD是BC邊上的中線,點E是AD的中點,過點A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:AEF≌△DEB;
(2)若∠BAC=90°,求證:四邊形ADCF是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】已知點P為某個封閉圖形邊界上的一定點,動點M從點P出發(fā),沿其邊界順時針勻速運動一周,設點M的運動時間為x,線段PM的長度為y,表示y與x的函數(shù)圖象大致如圖所示,則該封閉圖形可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一張寬為1cm的長方形紙片ABCD折疊成如圖所示的陰影圖案,頂點A,D互相重合,中間空白部分是以E為直角頂點,腰長為2cm的等腰直角三角形,則紙片的長AD(單位:cm)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點,,且點B在雙曲線上,在AB的延長線上取一點C,過點C的直線交雙曲線于點D,交x軸正半軸于點E,且,則線段CE長度的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知射線OC為∠AOB的平分線,且OA=OB,點P是射線OC上的任意一點,連接AP、BP.
(1)求證:△AOP≌△BOP;
(2)若∠AOB=50°,且點P是△AOB的外心,求∠APB的度數(shù);
(3)若∠AOB=50°,且△OAP為鈍角三角形,直接寫出∠OAP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A(0,8),B(4,0),直線y=﹣x沿x軸作平移運動,平移時交OA于D,交OB于C.
(1)當直線y=﹣x從點O出發(fā)以1單位長度/s的速度勻速沿x軸正方向平移,平移到達點B時結(jié)束運動,過點D作DE⊥y軸交AB于點E,連接CE,設運動時間為t(s).
①是否存在t值,使得△CDE是以CD為腰的等腰三角形?如果能,請直接寫出相應的t值;如果不能,請說明理由.
②將△CDE沿DE翻折后得到△FDE,設△EDF與△ADE重疊部分的面積為y(單位長度的平方).求y關于t的函數(shù)關系式及相應的t的取值范圍;
(2)若點M是AB的中點,將MC繞點M順時針旋轉(zhuǎn)90°得到MN,連接AN,請直接寫出AN+MN的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知頂點為M(,)的拋物線過點D(3,2),交x軸于A,B兩點,交y軸于點C,點P是拋物線上一動點.
(1)求拋物線的解析式;
(2)當點P在直線AD上方時,求△PAD面積的最大值,并求出此時點P的坐標;
(3)過點P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點Q的對應點為Q'.是否存在點P,使Q'恰好落在x軸上?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年端午節(jié)期間,小華都要自制 A、B 兩種類型的粽子在線上線下進行銷售,今年他經(jīng)過市場調(diào)查發(fā)現(xiàn),若制作 3 個 A 型粽子 2 個 B 型粽子需成本 11 元,若制作 2 個 A 型粽子 3 個B 型粽子需成本 11.5 元.
(1)求今年制作 A、B 兩種類型的粽子每個的成本分別是多少元?
(2)由于今年的疫情,小華預計網(wǎng)上銷售會大增,所以決定制作 A 型粽子 2000 個,B 型粽子 1000 個,并且統(tǒng)一售價每個 4 元,銷售一段時間后,隨著端午節(jié)的臨近,小華把剩余的粽子打 8 折全部通過線上線下兩種方式售出,在制作和銷售過程中還產(chǎn)生了除成本以外其它費用合計 700 元,小華在這次買賣中賺到至少 4000 元,則打折銷售的粽子最多是多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a(a≥50)米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com