已知點A的坐標為(a,b),O為坐標原點,連接OA,將線段OA繞點O按逆時針方向旋轉90°得OA1,則點A1的坐標為   
【答案】分析:畫出草圖分析.不妨設A在第一象限,將線段OA繞點O按逆時針方向旋轉90°得OA1,如圖所示.根據(jù)旋轉的性質,A1B1=AB,OB1=OB.綜合A1所在象限確定其坐標,其它象限解法完全相同.
解答:解:不妨設A在第一象限,將線段OA繞點O按逆時針方向旋轉90°得OA1,如圖所示.
∵A(a,b),∴OB=a,AB=b,
∴A1B1=AB=b,OB1=OB=a,
因為A1在第二象限,所以A1(-b,a),
A在其它象限結論也成立.
點評:不失一般性,可設點A在某一象限,以點帶面求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知點P的坐標為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y=-
2
x
的圖象上.小明對上述問題進行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y=-
2
x
,P點坐標為(1,0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標;M1的坐標是
 

(2)請你通過改變P點坐標,對直線M1M的解析式y(tǒng)﹦kx+b進行探究可得k﹦
 
,若點P的坐標為(m,0)時,則b﹦
 
;
(3)依據(jù)(2)的規(guī)律,如果點P的坐標為(6,0),請你求出點M1和點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
kx
相交于點A,B.已知點B的坐標為(-2,-2),點A在第一象限內(nèi),且tan∠AOx=4.過點A作直線AC∥x軸,交拋物線于另一點C.
(1)求雙曲線和拋物線的解析式;
(2)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•宜賓)如圖,直線y=x-1與反比例函數(shù)y=
kx
的圖象交于A、B兩點,與x軸交于點C,已知點A的坐標為(-1,m).
(1)求反比例函數(shù)的解析式;
(2)若點P(n,-1)是反比例函數(shù)圖象上一點,過點P作PE⊥x軸于點E,延長EP交直線AB于點F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知點P的坐標為(-2,a2+1),則點P一定在( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知點P的坐標為(1-2a,a-2),且點P到兩坐標軸的距離相等,求點P的坐標.

查看答案和解析>>

同步練習冊答案