【題目】如圖,在菱形ABCD中,AB=2,∠BAD=60°,過點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)如圖1,連接AC分別交DE、DF于點(diǎn)M、N,求證:MN=AC;
(2)如圖2,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)G、P,連接GP,當(dāng)△DGP的面積等于時,求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.
【答案】(1)證明見解析;(2)將△EDF以點(diǎn)D為旋轉(zhuǎn)中心,順時針或逆時針旋轉(zhuǎn)60°.
【解析】
試題分析:(1)連接BD,證明△ABD為等邊三角形,根據(jù)等腰三角形的三線合一得到AE=EB,根據(jù)相似三角形的性質(zhì)解答即可;
(2)分∠EDF順時針旋轉(zhuǎn)和逆時針旋轉(zhuǎn)兩種情況,根據(jù)旋轉(zhuǎn)變換的性質(zhì)解答即可.
試題解析:(1)證明:如圖1,連接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD為等邊三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴=,同理,=,∴MN=AC;
(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,當(dāng)∠EDF順時針旋轉(zhuǎn)時,由旋轉(zhuǎn)的性質(zhì)可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,∵∠GDE=∠PDF,∠DEG=∠DFP,DE=DF,∴△DEG≌△DFP,∴DG=DP,∴△DGP為等邊三角形,∴△DGP的面積==,解得,DG=,則cos∠EDG=,∴∠EDG=60°,∴當(dāng)順時針旋轉(zhuǎn)60°時,△DGP的面積等于;
同理可得,當(dāng)逆時針旋轉(zhuǎn)60°時,△DGP的面積也等于,綜上所述,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心,順時針或逆時針旋轉(zhuǎn)60°時,△DGP的面積等于.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD邊長為3,點(diǎn)E在AB邊上且BE=1,點(diǎn)P,Q分別是邊BC,CD的動點(diǎn)(均不與頂點(diǎn)重合),當(dāng)四邊形AEPQ的周長取最小值時,四邊形AEPQ的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)道路管理規(guī)定,在賀州某段筆直公路上行駛的車輛,限速40千米/時,已知交警測速點(diǎn)M到該公路A點(diǎn)的距離為米,∠MAB=45°,∠MBA=30°(如圖所示),現(xiàn)有一輛汽車由A往B方向勻速行駛,測得此車從A點(diǎn)行駛到B點(diǎn)所用的時間為3秒.
(1)求測速點(diǎn)M到該公路的距離;
(2)通過計算判斷此車是否超速.(參考數(shù)據(jù):≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點(diǎn),游客可從B處乘坐纜車先到達(dá)小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達(dá)A處,返程時從A處乘坐升降電梯直接到達(dá)C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負(fù)實數(shù)x“四舍五入”到個位的值記為[x].即當(dāng)n為非負(fù)整數(shù)時,若n﹣ ≤x<n+ ,則[x]=n.如:[3.4]=3,[3.5]=4,…根據(jù)以上材料,解決下列問題:
(1)填空:
①若[x]=3,則x應(yīng)滿足的條件:;
②若[3x+1]=3,則x應(yīng)滿足的條件:;
(2)求滿足[x]= x﹣1的所有非負(fù)實數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是矩形ABCD的對角線,過AC的中點(diǎn)O作EF⊥AC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A.3a+5b=8ab
B.3y2﹣y2=3
C.6a3+4a3=10a6
D.5m2n﹣3nm2=2m2n
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,2013)與點(diǎn)B(2014,b)關(guān)于x軸對稱,則a+b的值為( )
A.﹣1
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com