如圖,已知Rt△ABC中,∠ACB=90°,⊙O 是Rt△ABC的內(nèi)切圓,其半徑為1,E、D是切點(diǎn),∠BOC=105°.求AE的長(zhǎng).

解:連接OD、OE.
則OD=OE=1,
∵O是△ABC的內(nèi)切圓圓心
∴OB、OC分別是∠ABC、∠ACB的角平分線(xiàn),

又∵∠ACB=90°,∴,
∵OD、OE是過(guò)切點(diǎn)的半徑,
∴OD⊥BC 且OE⊥AB,∴∠OCD+∠COD=90°,
∴∠COD=∠OCD=45°,∴OD=CD=1,
∵∠COB=105°,∴∠DOB=∠COB-∠COD=60°,
在Rt△OBD中,
,
,
∠OBD+∠BOD=90°,∴∠OBD=30°,
,
∴∠ABC=60°,
∴BC=BD+CD=1+
在Rt△ABC中,
AB=2+2
在Rt△OBE中,
∵OE=1,∠OBE=30°,
∴BE==,
∴AE=2+
分析:首先根據(jù)切線(xiàn)長(zhǎng)的性質(zhì)以及切線(xiàn)的性質(zhì)得出BD的長(zhǎng),進(jìn)而得出BC的長(zhǎng)以及AB的長(zhǎng),即可得出AE的長(zhǎng).
點(diǎn)評(píng):此題主要考查了切線(xiàn)的性質(zhì)以及銳角三角函數(shù)的應(yīng)用,正確得出∠ABC的度數(shù)以及BC的長(zhǎng)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線(xiàn)BD交AC于點(diǎn)D,BD的垂直平分線(xiàn)分別交AB,BC于點(diǎn)E、F,CD=CG.
(1)請(qǐng)以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個(gè)菱形和兩個(gè)等腰梯形.那么,構(gòu)成菱形的四個(gè)頂點(diǎn)是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個(gè)頂點(diǎn)是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請(qǐng)你各選擇其中一個(gè)圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過(guò)點(diǎn)B作弦BF交AD于點(diǎn)精英家教網(wǎng)E,交⊙O于點(diǎn)F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長(zhǎng)線(xiàn)上一點(diǎn),PE⊥AB交BA延長(zhǎng)線(xiàn)于E,PF⊥AC交AC延長(zhǎng)線(xiàn)于F,D為BC中點(diǎn),連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過(guò)點(diǎn)A做AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
(1)求PA的長(zhǎng);
(2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個(gè)單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案