【題目】如圖,在△ABC中,ADBE是高,∠ABE=45°,點(diǎn)FAB的中點(diǎn),ADFE,BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④SABC=2SADF其中正確結(jié)論的序號(hào)是________.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

【答案】①②③

【解析】

由直角三角形斜邊上的中線性質(zhì)得出FD= AB,證明ABE是等腰直角三角形,得出AE=BE,證出FE= AB,可得FD=FE,①正確;

證出∠ABC=∠C,得出AB=AC,由等腰三角形的性質(zhì)得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA證明AEH≌△BEC,得出AH=BC=2CD,②正確;

證明ABD~BCE,得出=,即BCAD=ABBE,再由等腰直角三角形的性質(zhì)和三角形的面積得出BCAD= AE2;③正確;

FAB的中點(diǎn),BD=CD,得出SABC=2SABD=4SADF.④不正確;即可得出結(jié)論.

ABC中,ADBE是高,

∴∠ADB=∠AEB=∠CEB=90°,

點(diǎn)FAB的中點(diǎn),

∴FD= AB,

∵∠ABE=45°,

ABE是等腰直角三角形,

AE=BE,

點(diǎn)FAB的中點(diǎn),

∴FE= AB,

FD=FE,①正確;

∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,

∴∠ABC=∠C,

AB=AC,

ADBC,

BC=2CD,∠BAD=∠CAD=∠CBE,

AEHBEC,

AEHBEC(ASA),

AH=BC=2CD,②正確;

∵∠BAD=∠CBE,∠ADB=∠CEB

ABDBCE,

=,即BCAD=ABBE,

ABE是等腰直角三角形,

∴AB=AE,

ABAE=ABBE =,BCAD=ACBE=ABBE,

BCAD=;③正確;

FAB的中點(diǎn),BD=CD,

SABC=2SABD=4SADF.④不正確.

故答案為①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB,BC,CD分別與⊙O相切于E,F(xiàn),G三點(diǎn),且ABCD,連接OB,OC.

(1)如圖1,求∠BOC的度數(shù);

(2)如圖2,延長(zhǎng)CO交⊙O于點(diǎn)M,過點(diǎn)MMNOBCD于點(diǎn)N,當(dāng)OB=6,OC=8時(shí),求⊙O的半徑及MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回),其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于⊙O,AD、AE分別平分∠BAC和△BAC的外角∠BAF,且分別交圓于點(diǎn)D、F,連接DE,CD,DE與BC相交于點(diǎn)G.

(1)求證:DE是△ABC的外接圓的直徑;

(2)設(shè)OG=3,CD=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD的面積為S,點(diǎn)P、Q時(shí)是ABCD對(duì)角線BD的三等分點(diǎn),延長(zhǎng)AQ、AP,分別交BC,CD于點(diǎn)E,F(xiàn),連結(jié)EF。甲,乙兩位同學(xué)對(duì)條件進(jìn)行分析后,甲得到結(jié)論①:“E是BC中點(diǎn)” .乙得到結(jié)論②:“四邊形QEFP的面積為S”。請(qǐng)判斷甲乙兩位同學(xué)的結(jié)論是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E,F分別是AB,BC,AC的中點(diǎn),連接DE,EF,DF,則下列說法不正確的是( 。

A. SDEFSABC

B. DEF≌△FAD≌△EDB≌△CFE

C. 四邊形ADEF,四邊形DBEF,四邊形DECF都是平行四邊形

D. 四邊形ADEF的周長(zhǎng)=四邊形DBEF的周長(zhǎng)=四邊形DECF的周長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y=(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,兩個(gè)邊長(zhǎng)都為4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的對(duì)稱中心,則圖中陰影部分的面積為_______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)F、C⊙O上且, 連接AC、AF,過點(diǎn)CCD⊥AFAF的延長(zhǎng)線于點(diǎn)D.

(1)求證:CD⊙O的切線;

(2), CD=4,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案