【題目】在緊張的中考復(fù)習(xí)之際,為確保學(xué)生的飲食健康與安全,部分家長組織成立中考護(hù)衛(wèi)小分隊(duì),每天不辭辛勞從城區(qū)進(jìn)購正規(guī)檢疫菜品。某甲、乙兩種菜品每份進(jìn)價(jià)分別為 14 元、16 元,售價(jià)均為每份 18 元,這兩種菜品每天的進(jìn)價(jià)總額為 1480 元,全部銷售完每天總利潤為 320 .

1)該甲、乙兩種菜品每天各賣出多少份?

2)因受氣溫變化的影響,甲種菜品進(jìn)價(jià)每份上漲 a 0 a 4元,為確保學(xué)生的營養(yǎng),在每天兩種菜品的進(jìn)購總量不變的情況下,要求甲種菜品的數(shù)量不得低于 10 份,也不超過乙種菜品的 3 倍,則進(jìn)購甲種菜品多少份才能使每天的總利潤最大.

【答案】1)甲種菜品賣出60份,乙種菜品賣出40份;(2)進(jìn)購甲種菜品75份時(shí)所獲利潤最大.

【解析】

1)設(shè)甲、乙兩種菜品每天各賣出xy份,根據(jù)題意列出方程組求解即可;

2)設(shè)進(jìn)購甲種菜品m,則進(jìn)購乙種菜品(60+40-m),每天獲得的利潤為w元,先用式子表示出每天的利潤,并列出不等式組求出m的取值范圍,進(jìn)而得解.

解:設(shè)甲、乙兩種菜品每天各賣出x、y份,根據(jù)題意得:

解得:

答:甲種菜品賣出60,乙種菜品賣出40份;

2)設(shè)進(jìn)購甲種菜品m,每天獲得的利潤為w

=200+(2-a)m 0 a 4

解得10≤m≤75

分三種情況討論:

①當(dāng)(2-a)>0時(shí),即0a 2時(shí),w隨著m的增大而增大,故m=75

∴當(dāng)(2-a)>0,m=75時(shí),w=200+75(2-a)>200

②當(dāng)(2-a)=0時(shí),可得w=200;

③當(dāng)(2-a) 0時(shí),w隨著m的增大而減小,故m=10時(shí)w最大,

∴m=10時(shí),w=200+10(2-a)

綜上,當(dāng)m=75時(shí),所獲利潤最大.

答:進(jìn)購甲種菜品75份時(shí)所獲利潤最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將放在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn),點(diǎn),點(diǎn)均落在格點(diǎn)上.

(Ⅰ)的長等于______________________.

(Ⅱ)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出關(guān)于直線對(duì)稱的圖形,并簡要說明畫圖方法(不要求證明).

________________________________________________________________________________________________________________________________________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ABBC,點(diǎn)DAC邊的中點(diǎn),延長BD至點(diǎn)E,使得DEBD,連結(jié)CE

1)求證:△ABD≌△CED

2)當(dāng)BC5,CD3時(shí),求△BCE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將放在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.

I)計(jì)算的值等于____________;

(Ⅱ)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一個(gè)以AB為一邊、面積等于的矩形,并簡要說明畫圖方法(不要求證明)_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列幾何體是由4個(gè)相同的小正方體搭成的,其中主視圖和左視圖相同的是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線,x軸于,交y軸的負(fù)半軸于點(diǎn)C,頂點(diǎn)為D.

有下列結(jié)論:

;

③當(dāng)△ABD是等腰直角三角形時(shí),則;

④當(dāng)△ABC是等腰三角形時(shí),a的值有3個(gè),其中,正確結(jié)論的個(gè)數(shù)是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知拋物線x軸交于A,B兩點(diǎn)(點(diǎn)d在點(diǎn)B的右側(cè)),與y軸交于點(diǎn),頂點(diǎn)為D.

I)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo):

(Ⅱ)Q為線段BD上一點(diǎn),點(diǎn)A關(guān)于∠AQB的平分線的對(duì)稱點(diǎn)為A',

①判斷點(diǎn)A'與直線BQ的位置關(guān)系:點(diǎn) (填寫“在”或“不在”)直線BQ上:

②若,求點(diǎn)2的坐標(biāo):

(Ⅲ)若此拋物線的對(duì)稱軸上的點(diǎn)P滿足,求點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=

(1)將其配方成頂點(diǎn)式,并寫出它的圖象的開口方向、頂點(diǎn)坐標(biāo)、對(duì)稱軸.

(2)在如圖所示的直角坐標(biāo)系中畫出函數(shù)圖象,并指出當(dāng)y<0時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點(diǎn)測(cè)得D點(diǎn)的仰角EAD為45°,在B點(diǎn)測(cè)得D點(diǎn)的仰角CBD為60°,求這兩座建筑物的高度(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案