如圖,已知二次函數(shù)的圖象與x軸交于A、B兩點(diǎn)(B在A的左側(cè)),頂點(diǎn)為C, 點(diǎn)D(1,m)在此二次函數(shù)圖象的對稱軸上,過點(diǎn)D作y軸的垂線,交對稱軸右側(cè)的拋物線于E點(diǎn).

(1)求此二次函數(shù)的解析式和點(diǎn)C的坐標(biāo);

(2)當(dāng)點(diǎn)D的坐標(biāo)為(1,1)時(shí),連接BD、.求證:平分;

(3)點(diǎn)G在拋物線的對稱軸上且位于第一象限,若以A、C、G為頂點(diǎn)的三角形與以G、D、E為頂點(diǎn)的三角形相似,求點(diǎn)E的橫坐標(biāo).

 

【答案】

(1)二次函數(shù)的解析式為; C(1,-4);

(2)平分;

(3)E點(diǎn)的橫坐標(biāo)為..

【解析】

試題分析:解:(1)∵點(diǎn)D(1,m)在圖象的對稱軸上,

∴二次函數(shù)的解析式為

∴C(1,-4).  

(2)∵D(1,1),且DE垂直于y軸,

∴點(diǎn)E的縱坐標(biāo)為1,DE平行于x軸.

,則,解得

∵點(diǎn)E位于對稱軸右側(cè),

∴E

∴D E =

,則,求得點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(-1,0).

∴BD =

∴BD = D E.

平分

(3)∵以A、C、G為頂點(diǎn)的三角形與以G、D、E為頂點(diǎn)的三角形相似,

且△GDE為直角三角形,

∴△ACG為直角三角形.       

∵G在拋物線對稱軸上且位于第一象限,

∵A(3,0)C(1,-4),,

∴求得G點(diǎn)坐標(biāo)為(1,1).

∴AG=,AC=

∴AC=2 AG.

∴GD=2 DE或 DE =2 GD.

設(shè)(t >1) ,

.當(dāng)點(diǎn)D在點(diǎn)G的上方時(shí),則DE=t -1,

GD = ()=.

i.如圖,當(dāng) GD=2 DE時(shí),

則有, = 2(t-1).

解得,.(舍負(fù))

ii. 如圖3當(dāng)DE =2GD時(shí),

則有,t -1=2().

解得,.(舍負(fù))

. 當(dāng)點(diǎn)D在點(diǎn)G的下方時(shí),則DE=t -1,

  GD=1- ()= -.

i. 如圖,當(dāng) GD=2 DE時(shí),

則有, =2(t -1).

解得,.(舍負(fù)) 

ii. 如圖,當(dāng)DE =2 GD時(shí),

則有,t-1=2().

解得,.(舍負(fù))  

綜上,E點(diǎn)的橫坐標(biāo)為.

考點(diǎn):拋物線相關(guān).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(3,3)、B(4,0)和原點(diǎn)O.P為二次函數(shù)圖象上精英家教網(wǎng)的一個(gè)動點(diǎn),過點(diǎn)P作x軸的垂線,垂足為D(m,0),并與直線OA交于點(diǎn)C.
(1)求出二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P在直線OA的上方時(shí),求線段PC的最大值;
(3)當(dāng)m>0時(shí),探索是否存在點(diǎn)P,使得△PCO為等腰三角形,如果存在,求出P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•呼和浩特)如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(6,0)、B(-2,0)和點(diǎn)C(0,-8).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動點(diǎn),當(dāng)△KCM的周長最小時(shí),點(diǎn)K的坐標(biāo)為
6
7
,0)
6
7
,0)
;
(3)連接AC,有兩動點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長度的速度沿折線OAC按O→A→C的路線運(yùn)動,點(diǎn)Q以每秒8個(gè)單位長度的速度沿折線OCA按O→C→A的路線運(yùn)動,當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動,設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.
①請問P、Q兩點(diǎn)在運(yùn)動過程中,是否存在PQ∥OC?若存在,請求出此時(shí)t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過點(diǎn)A(0,-3),B(
3
,
3
),對稱軸為直線x=-
1
2
,點(diǎn)P是拋物線上的一動點(diǎn),過點(diǎn)P分別作PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點(diǎn)的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點(diǎn)P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點(diǎn),與y軸交于點(diǎn)D(0,4).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫出該拋物線的頂點(diǎn)C的坐標(biāo);
(3)求四邊形ACBD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象(0≤x≤3.4),關(guān)于該函數(shù)在所給自變量的取值范圍內(nèi),下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案