【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,建立如圖所示的直角坐標(biāo)系,已知兩點(diǎn)A0,2),B4,1

1)請(qǐng)?jiān)?/span>x軸上畫出一點(diǎn)P,使得PA+PB的值最小;

2)請(qǐng)直接寫出:點(diǎn)P的坐標(biāo)  ;PA+PB的最小值為  

【答案】1)詳見(jiàn)解析;(2P點(diǎn)坐標(biāo)為(,0),PA+PB的最小值為5

【解析】

1)作A點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)A′,連結(jié)BA′x軸于P點(diǎn),利用對(duì)稱的性質(zhì)得到PAPA′,則PA+PBPA′+PBBA′,于是利用兩點(diǎn)之間線段最短可判斷P點(diǎn)滿足條件;

2)先寫出點(diǎn)A′的坐標(biāo)為(0,﹣2),再利用待定系數(shù)法求出直線BA′的解析式為yx2,然后解方程x20P點(diǎn)坐標(biāo),然后利用兩點(diǎn)間的距離公式求出BA′即可.

解:(1)如圖,點(diǎn)P為所作;

2A點(diǎn)關(guān)于x軸對(duì)稱的點(diǎn)A′的坐標(biāo)為(0,﹣2),

設(shè)直線BA′的解析式為ykx+b,

A′(0,﹣2),B4,1)得,解得,

∴直線BA′的解析式為yx2,

當(dāng)y0時(shí),x20,解得x,

P點(diǎn)坐標(biāo)為(,0),

PA+PB的最小值=,

故答案為:(,0),5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(背景介紹)勾股定理是幾何學(xué)中的明珠,充滿著魅力.千百年來(lái),人們對(duì)它的證明趨之若騖,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛(ài)好者.向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法.

(小試牛刀)把兩個(gè)全等的直角三角形如圖1放置,其三邊長(zhǎng)分別為a、b、c.顯然,∠DAB=B=90°,ACDE.請(qǐng)用a、b、c分別表示出梯形ABCD、四邊形AECD、EBC的面積,再探究這三個(gè)圖形面積之間的關(guān)系,可得到勾股定理:

S梯形ABCD=

SEBC= ,

S四邊形AECD= ,

則它們滿足的關(guān)系式為 ,經(jīng)化簡(jiǎn),可得到勾股定理.

(知識(shí)運(yùn)用)(1)如圖2,鐵路上A、B兩點(diǎn)(看作直線上的兩點(diǎn))相距40千米,C、D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),ADAB,BCAB,垂足分別為A、B,AD=25千米,BC=16千米,則兩個(gè)村莊的距離為 千米(直接填空);

2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個(gè)供應(yīng)站P,使得PC=PD,請(qǐng)用尺規(guī)作圖在圖2中作出P點(diǎn)的位置并求出AP的距離.

(知識(shí)遷移)借助上面的思考過(guò)程與幾何模型,求代數(shù)式最小值(0x16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC會(huì)平行嗎?說(shuō)明理由.

(2)ADBC的位置關(guān)系如何?為什么?

(3)求證:BC平分∠DBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0)(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D.連接AC,BD.

(1)寫出點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積.

(2)y軸上是否存在一點(diǎn)P,連接PA,PB,使S三角形PABS四邊形ABDC?若存在,求出點(diǎn)P的坐標(biāo),若不存在,試說(shuō)明理由;

(3)點(diǎn)Q是線段BD上的動(dòng)點(diǎn),連接QC,QO,當(dāng)點(diǎn)QBD上移動(dòng)時(shí)(不與B,D重合),給出下列結(jié)論:①的值不變;②的值不變,其中有且只有一個(gè)正確,請(qǐng)你找出這個(gè)結(jié)論并求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有個(gè)填寫運(yùn)算符號(hào)的游戲:在“”中的每個(gè)“口”內(nèi),填入+,-,×,÷中的某一個(gè)(可重復(fù)使用),然后計(jì)算結(jié)果.

(1)計(jì)算:

(2)若請(qǐng)推算“口”內(nèi)的運(yùn)算符號(hào).

(3)在“”的“口”內(nèi)填入運(yùn)算符號(hào)后,使計(jì)算所得的數(shù)最小,直接寫出這個(gè)最小的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鐵路MN和公路PQ在點(diǎn)O處交匯,QON=30°,公路PQA處距O點(diǎn)240米,如果火車行駛時(shí),周圍200米以內(nèi)會(huì)受到噪音的影響,那么火車在鐵路MN上沿ON方向以72千米/時(shí)的速度行駛時(shí),求A處受噪音影響的時(shí)間。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始.先向左移動(dòng)6cm到達(dá)A點(diǎn),再?gòu)?/span>A點(diǎn)向右移動(dòng)10cm到達(dá)B點(diǎn),點(diǎn)C是線段AB的中點(diǎn).

1)點(diǎn)C表示的數(shù)是   ;

2)若點(diǎn)A以每秒2cm的速度向左移動(dòng),同時(shí)C、B兩點(diǎn)分別以每秒1cm、4cm的速度向右移動(dòng),設(shè)移動(dòng)時(shí)間為t秒,

運(yùn)動(dòng)t秒時(shí),點(diǎn)C表示的數(shù)是   (用含有t的代數(shù)式表示);

當(dāng)t2秒時(shí),CBAC的值為   

試探索:點(diǎn)A、B、C在運(yùn)動(dòng)的過(guò)程中,線段CBAC總有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,AB=2,A=120°,點(diǎn)P,Q,K分別為線段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為【 】

 A.1 B. C. 2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明站在池塘邊的點(diǎn)處,池塘的對(duì)面(小明的正北方向)處有一棵小樹(shù),他想知道這棵樹(shù)距離他有多遠(yuǎn),于是他向正東方向走了12步到達(dá)電線桿旁,接著再往前走了12步,到達(dá)處,然后他改向正南方向繼續(xù)行走,當(dāng)小明看到電線桿、小樹(shù)與自己現(xiàn)處的位置在一條直線上時(shí),他共走了60.

1)根據(jù)題意,畫出示意圖(寫出作圖步驟);

2)如果小明一步大約40 ,估算出小明在點(diǎn)處時(shí)小樹(shù)與他的距離為多少米,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案