【題目】Rt△ABC中,∠C=90°,AB=5,內(nèi)切圓半徑為1,則三角形的周長為( )
A.15
B.12
C.13
D.14
【答案】B
【解析】 解:連接OA、OB、OC、OD、OE、OF,
∵⊙O是△ABC的內(nèi)切圓,切點分別是D、E、F,
∴OD⊥AC,OE⊥AB,OF⊥BC,AD=AE,BE=BF,
∴∠ODC=∠OFC=∠ACB=90°,
∵OD=OF,
∴四邊形ODCF是正方形,
∴CD=OD=OF=CF=1,
∵AD=AE,BF=BE,
∵AE+BE=AB=5,
∴AD+BF=5,
∴△ABC的周長是:AC+BC+AB=AD+CD+CF+BF+AB=5+1+1+5=12.
故選B.
【考點精析】解答此題的關(guān)鍵在于理解切線長定理的相關(guān)知識,掌握從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角,以及對切線的性質(zhì)定理的理解,了解切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數(shù) | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | 9.5 |
(1)完成表中填空①;②;
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績方差為 ,你認為推薦誰參加比賽更合適,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一張圓形紙片按如圖所示方式折疊兩次后展開,圖中的虛線表示折痕,則 的度數(shù)是( )
A.120°
B.135°
C.150°
D.165°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一種商品,每件商品進價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中點,ED的延長線與CB的延長線交于點F.
(1)求證:FD2=FBFC;
(2)若G是BC的中點,連接GD,GD與EF垂直嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期半個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:優(yōu)秀;B:良好;C:合格;D:一般;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了多少名同學?
(2)將上面的條形統(tǒng)計圖補充完整;并求出“D”所占的圓心角的度數(shù);
(3)從被調(diào)查的A類和D類學生中分別選取一位同學進行“一對一”互助學習,請求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com