【題目】如圖,直線AB∥CD,點(diǎn)E、M分別為直線AB、CD上的點(diǎn),點(diǎn)N為兩平行線間的點(diǎn),連接NE、NM,過點(diǎn)N作NG平分∠ENM,交直線CD于點(diǎn)G,過點(diǎn)N作NF⊥NG,交直線CD于點(diǎn)F,若∠BEN=160°,則∠NGD﹣∠MNF=__度.
【答案】110.
【解析】
過N點(diǎn)作NH∥AB,則AB∥NH∥CD,由平行線的性質(zhì)得∠BEN+∠ENG+∠GNM+∠MNF+∠NFG=360,進(jìn)而由NG平分∠ENM和∠BEN=160得∠GNM+∠GNM+∠MNF+∠NFG=200,再由得∠GNM+∠NFG=110,進(jìn)而由外角定理得結(jié)果.
過N點(diǎn)作NH∥AB,則AB∥NH∥CD,
∴∠BEN+∠ENH=∠HNF+∠NFG=180,
∴∠BEN+∠ENH+∠HNF+∠NFG=360,
∴∠BEN+∠ENG+∠GNM+∠MNF+∠NFG=360,
∵∠BEN=160,
∴∠ENG+∠GNM+∠MNF+∠NFG=200,
∵NG平分∠ENM,
∴∠ENG=∠GNM,
∴∠GNM+∠GNM+∠MNF+∠NFG=200,
∵NF⊥NG,
∴∠GNM+∠MNF=∠GNF=90,
∴∠GNM+90°+∠NFG=200,
∴∠GNM+∠NFG=110,
∵∠NGD=∠GNM+∠MNF+∠NFG,
∴∠NGD﹣∠MNF=∠GNM+∠NFG=110.
故答案為:110.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,是的中點(diǎn),延長到點(diǎn),使,連接.
(1)求證:四邊形是平行四邊形;
(2)若,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:探究函數(shù)的圖象與性質(zhì).
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了研究.
下面是小明的研究過程,請補(bǔ)充完成.
(1)自變量的取值范圍是全體實(shí)數(shù),與的幾組對應(yīng)值列表如下:
… | -4 | -3 | -2 | -1 | 0 | 4 | … | ||||
… | 2 | 1 | 0 | n | 0 | 1 | m | 3 | 4 | … |
其中,m= n= ;
(2)在如圖所示的平面直角坐標(biāo)中,描出以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象.
(3)觀察圖象,寫出該函數(shù)的兩條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時(shí)到達(dá)海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由(參考數(shù)據(jù): ≈1.4, ≈1.7).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格紙中,每個小正方形的邊長都是1個單位長度,每個小正方形的頂點(diǎn)叫格點(diǎn),三角形ABC的三個頂點(diǎn)都在格點(diǎn)上.
(1)畫出三角形ABC向上平移4個單位后的三角形A1B1C1(點(diǎn)A,B,C的對應(yīng)點(diǎn)為點(diǎn)A1,B1,C1);
(2)畫出三角形A1B1C1向左平移5個單位后的三角形A2B2C2(點(diǎn)A1,B1,C1的對應(yīng)點(diǎn)為點(diǎn)A2,B2,C2);
(3)分別連接AA1,A1A2,AA2,并直接寫出三角形AA1A2的面積為 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】朱先生利用分期付款的形式購買了一套住房,他購買的住房的價(jià)格為24萬元,交了首付之后每年付款y萬元,x年結(jié)清余款,y與x的函數(shù)關(guān)系如圖所示,請根據(jù)圖象所提供的信息,回答下列問題:
(1)確定y與x的函數(shù)解析式,并求出首付款的數(shù)目;
(2)朱先生若用10年結(jié)清余款,則每年應(yīng)付多少錢?
(3)如果朱先生打算每年付款不超過7000元,那么他至少需要幾年才能結(jié)清余款?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】猜想歸納:為了建設(shè)經(jīng)濟(jì)型節(jié)約型社會,“先鋒”材料廠把一批三角形廢料重新利用,因此工人師傅需要把它們截成不同大小的正方形鐵片.(已知:AC=40,BC=30,∠C=90°)
(1)如圖①,若截取△ABC的內(nèi)接正方形DEFG,請你求出此正方形的邊長;
(2)如圖②,若在△ABC內(nèi)并排截取兩個相同的正方形(它們組成的矩形內(nèi)接于△ABC),請你求此正方形的邊長;
(3)如圖③,若在△ABC內(nèi)并排截取三個相同的正方形(它們組成的矩形內(nèi)接于△ABC),請你求此正方形的邊長;
(4)猜想:如圖④,假設(shè)在△ABC內(nèi)并排截取n個相同的正方形,使它們組成的矩形內(nèi)接于△ABC,則此正方形的邊長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,AB= ,折疊后,點(diǎn)C落在AD邊上的C1處,并且點(diǎn)B落在EC1邊上的B1處.則BC的長為( 。
A. B. 3 C. 2 D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com