如圖,AB∥CD,AB=CD,點(diǎn)E、F在BC上,且BE=CF.
(1)求證:△ABE≌△DCF;
(2)試證明:以A、F、D、E為頂點(diǎn)的四邊形是平行四邊形.
證明:(1)如圖,∵AB∥CD,
∴∠B=∠C.
∵在△ABE與△DCF中,
AB=CD, ∠B=∠C, BE=CF,
∴△ABE≌△DCF(SAS);
(2)如圖,連接AF、DE.
由(1)知,△ABE≌△DCF,
∴AE=DF,∠AEB=∠DFC,
∴∠AEF=∠DFE,
∴AE∥DF,
∴以A、F、D、E為頂點(diǎn)的四邊形是平行四邊形.
【解析】
(1)由全等三角形的判定定理SAS證得△ABE≌△DCF;(2)利用(1)中的全等三角形的對(duì)應(yīng)角相等證得∠AEB=∠DFC,則∠AEF=∠DFE,所以根據(jù)平行線的判定可以證得AE∥DF.由全等三角形的對(duì)應(yīng)邊相等證得AE=DF,則易證得結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:青島版八年級(jí)下6.1平行四邊形及其性質(zhì) 題型:填空題
如圖所示,平行四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)O的直線分別交AD、BC于點(diǎn)M、N,若△CON的面積為2,△DOM的面積為4,則△AOB的面積為_(kāi)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:青島版八年級(jí)上3.4+分式的通分 題型:選擇題
分式、、的最簡(jiǎn)公分母是( 。
A.15abx B.15abx3 C.30abx D.30abx3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:青島版八年級(jí)下6.2平行四邊形的判定 題型:選擇題
下列條件中,能確定一個(gè)四邊形是平行四邊形的是( )
A.一組對(duì)邊相等
B.一組對(duì)角相等
C.兩條對(duì)角線相等
D.兩條對(duì)角線互相平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:青島版八年級(jí)下6.1平行四邊形及其性質(zhì) 題型:解答題
已知平行四邊形ABCD的周長(zhǎng)為60cm,對(duì)角線AC,BD相交于點(diǎn)O,△BOC的周長(zhǎng)比△AOB的周長(zhǎng)長(zhǎng)8cm,求這個(gè)平行四邊形各邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:青島版八年級(jí)下6.2平行四邊形的判定 題型:填空題
如圖所示,平行四邊形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),連接AE、AF、CE、CF,添加 __________條件,可以判定四邊形AECF是平行四邊形.(填一個(gè)符合要求的條件即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:青島版八年級(jí)下6.3特殊的平行四邊形 題型:選擇題
如圖,在菱形ABCD中,已知∠A=60°,AB=5,則△ABD的周長(zhǎng)是( )
A.10 B.12 C.15 D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:青島版八年級(jí)下6.3特殊的平行四邊形 題型:選擇題
如圖,正方形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,則圖中的等腰三角形有( )
A.4個(gè) B.6個(gè) C.8個(gè) D.10個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:青島版八年級(jí)下6.4三角形的中位線 題型:選擇題
如圖,AB∥CD,E,F(xiàn)分別為AC,BD的中點(diǎn),若AB=5,CD=3,則EF的長(zhǎng)是( )
A.4 B.3 C.2 D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com