【題目】如圖,將邊長為3的正方形置于平面直角坐標(biāo)系第一象限,使邊落在軸的正半軸上,直線:經(jīng)過點(diǎn)且與軸交于點(diǎn).
(1)求點(diǎn)坐標(biāo);
(2)求的面積;
(3)若直線與軸交于點(diǎn),在軸上是否存在點(diǎn),使得是直角三角形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2);(3)存在,,,,.
【解析】
(1)由正方形的性質(zhì)可知點(diǎn)C的縱坐標(biāo)為3,把y=3代入即可求出點(diǎn)C的坐標(biāo);
(2)先求出點(diǎn)E的坐標(biāo),再根據(jù)三角形的面積公式求解即可;
(3)分四種情況求解即可:①當(dāng)FCP1=90°時,②當(dāng)CFP2=90°時,③當(dāng)CP3F=90°時,④當(dāng)CP4F=90°時.
(1)∵正方形的邊長為3,
∴AD=AB=3,
當(dāng)y=3時,,
∴x=4,
∴;
(2)把代入得,∴,
又∵,∴,
∴;
(3)當(dāng)x=3時,,
∴,
∵,,
∴CE=,CF=,
∴EF=CE=.
①當(dāng)FCP1=90°時,設(shè)P1(x,0),
∵CP12=BC2+BP12=EP1-CE2,
∴9+(x-4)2=(x-2)2-13,
解得
x=,
∴;
②當(dāng)CFP2=90°時,
與①同理可求;
③當(dāng)CP3F=90°時,
∵EF=CE=,
∴EP3=EF=CE=,
∴OP3=2+,
∴;
④當(dāng)CP4F=90°時,
與③同理可求.
綜上可知,,,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分別是AB、AC的中點(diǎn),動點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動,速度為1cm/s,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿BF方向勻速運(yùn)動,速度為2cm/s,連接PQ,設(shè)運(yùn)動時間為ts(0<t<1),則當(dāng)t=___時,△PQF為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太倉港區(qū)道路綠化工程工地有大量貨物需要運(yùn)輸,某車隊(duì)有載重量為8噸和10噸的卡車共15輛,所有車輛運(yùn)輸一次能運(yùn)輸128噸貨物.
(1)求該車隊(duì)載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的擴(kuò)大,車隊(duì)需要一次運(yùn)輸貨物170噸以上,為了完成任務(wù),車隊(duì)準(zhǔn)備增購這兩種卡車共5輛(兩種車都購買),請寫出所有可能的購車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程有兩個實(shí)數(shù)根和.
(1)求實(shí)數(shù)的取值范圍;
(2)當(dāng)時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在行駛完某段全程600千米的高速公路時,李師傅對張師傅說:“你的車速太快了,平均每小時比我多跑20千米,比我少用1.5小時就跑完了全程.”
(1)若這段高速公路全程限速120千米/小時,兩人全程均勻速行駛.那么張師傅超速了嗎?請說明理由;
(2)張師傅所行駛的車內(nèi)油箱余油量(升)與行駛時間(時)的函數(shù)關(guān)系如圖所示,則行駛完這段高速公路,他至少需要多少升油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB和CD相交于點(diǎn)O,在∠COB的內(nèi)部作射線OE.
(1)若∠AOC=36°,∠COE=90°,求∠BOE的度數(shù);
(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車自駕出游。
根據(jù)以上信息,解答下列問題:
(1)設(shè)租車時間為 小時,租用甲公司的車所需費(fèi)用為 元,租用乙公司的車所需費(fèi)用為 元,分別求出 , 關(guān)于 的函數(shù)表達(dá)式;
(2)請你幫助小明計(jì)算并選擇哪個出游方案合算。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關(guān)系如圖,請結(jié)合圖象,解答下列問題:
(1)a= , b= , m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點(diǎn)A是拋物線C2上在第一象限的動點(diǎn),過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問在C2的對稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com