【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線經(jīng)過點,對稱軸是直線,頂點為點,拋物線與軸交于點.
(1)求拋物線的表達(dá)式和點的坐標(biāo);
(2)將上述拋物線向下平移個單位,平移后的拋物線與軸正半軸交于點,求的面積;
(3)如果點在原拋物線上,且在對稱軸的右側(cè),聯(lián)結(jié)交線段于點,,求點的坐標(biāo).
【答案】(1)拋物線的表達(dá)式為,
(2)
(3)
【解析】
(1)由題意知二次函數(shù)對稱軸x=-,點,對稱軸是直線,拋物線的表達(dá)式為,代入頂點公式即可求出;
(2)根據(jù)題意分別找到B,C,D三點求三角形面積即可;
(3)根據(jù)平行線分線段成比例,組圖利用平行線來求P點坐標(biāo).
(1)根據(jù)二次函數(shù),對稱軸x=-,
系數(shù)a=1,b=m,c=n,
又∵點,對稱軸是直線,代入得:
x=-=--=1,-2=4+2m+n,
則m=-2,n=-2,
∴函數(shù)解析式為;
頂點坐標(biāo)為,代入a=1,b=-2,c=-2得:
頂點;
(2)由平移知識知平移后解析式為:,
則與x正半軸交點為y=0,帶入函數(shù)式求得x=3,
即D(3,0),
根據(jù)求得坐標(biāo)作圖,作BM⊥x軸,
則=+-,
∴=+ - ,
代入數(shù)值解得:=,
即的面積為;
(3)
作OP平行于AB交拋物線于點P,由題意設(shè)P(x,),
∵,
∴AB:OP=1:5,
由點,,
得:AB=,
∴OP=5AB=5,
OP= ,
∴=5,
解得:x=4,或x=-3,
∵P 在對稱軸右側(cè),
∴x>0,
∴x=4,
把x=4代入原函數(shù)表達(dá)式得:y=6;
∴P點坐標(biāo)為P(4,6).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想利用所學(xué)知識測量一公園門前熱氣球直徑的大小,如圖,當(dāng)熱氣球升到某一位置時,小明在點A處測得熱氣球底部點C、中部點D的仰角分別為50°和60°,已知點O為熱氣球中心,EA⊥AB,OB⊥AB,OB⊥OD,點C在OB上,AB=30m,且點E、A、B、O、D在同一平面內(nèi),根據(jù)以上提供的信息,求熱氣球的直徑約為多少米?(精確到0.1m)
(參考數(shù)據(jù):sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,點P是BC邊上一點,連接AP交對角線BD于點E,.作線段AP的中垂線MN分別交線段DC,DB,AP,AB于點M,G,F,N.
(1)求證:;
(2)若,求.
(3)如圖2,在(2)的條件下,連接CF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù),反比例函數(shù)(a,b,k是常數(shù),且),若其中一部分x,y的對應(yīng)值如表:則不等式的解集是_________.
x | 1 | 2 | 3 | 4 | ||||
3 | 2 | 1 | 0 | |||||
2 | 3 | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了深入學(xué)習(xí)社會主義核心價值觀,對本校學(xué)生進(jìn)行了一次相關(guān)知識的測試,隨機抽取了部分學(xué)生的測試成績進(jìn)行統(tǒng)計(根據(jù)成績分為、、、、五個組,表示測試成績,組:;組:;組:;組:;組:),通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:
(1)抽取的學(xué)生共有______人,請將兩幅統(tǒng)計圖補充完整;
(2)抽取的測試成績的中位數(shù)落在______組內(nèi);
(3)本次測試成績在80分以上(含80分)為優(yōu)秀,若該校初三學(xué)生共有1200人,請估計該校初三測試成績?yōu)閮?yōu)秀的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線與軸交于,兩點,與軸交于點,點是拋物線對稱軸上任意一點,若點、、分別是、、的中點,連接,,則的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,點E是AD的中點,連接CE,并延長CE與BA的延長線交于點F, 若∠BCF=90°,則∠D的度數(shù)為( )
A.60°B.55°C.45°D.40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮在研究矩形的面積S與矩形的邊長x,y之間的關(guān)系時,得到下表數(shù)據(jù):
x | 0.5 | 1 | 1.5 | 2 | 3 | 4 | 6 | 12 |
y | 12 | 6 | ■ | 3 | 2 | 1.5 | 1 | 0.5 |
結(jié)果發(fā)現(xiàn)一個數(shù)據(jù)被墨水涂黑了.
(1)被墨水涂黑的數(shù)據(jù)為_________;
(2)y與x的函數(shù)關(guān)系式為_________,且y隨x的增大而_________;
(3)如圖是小亮畫出的y關(guān)于x的函數(shù)圖象,點B、E均在該函數(shù)的圖象上,其中矩形的面積記為,矩形的面積記為,請判斷與的大小關(guān)系,并說明理由;
(4)在(3)的條件下,交于點G,反比例函數(shù)的圖象經(jīng)過點G交于點H,連接、,則四邊形的面積為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com