如圖,已知拋物線(xiàn)與軸交于點(diǎn),,與y軸交于點(diǎn).
(1)求拋物線(xiàn)的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線(xiàn)CD交軸于點(diǎn)E.在線(xiàn)段OB的垂直平分線(xiàn)上是否存在點(diǎn)P,使得點(diǎn)P到直線(xiàn)CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由
(1)(1,9)
(2)點(diǎn)P坐標(biāo)為 (2,)
【解析】解:(1)設(shè)該拋物線(xiàn)的解析式為,
由拋物線(xiàn)與y軸交于點(diǎn)C(0,8),可知c=8.
即拋物線(xiàn)的解析式為. …………………1分
把,,代入, 得
解得.
∴ 拋物線(xiàn)的解析式為 ……………………………………………3分
∴ 頂點(diǎn)D的坐標(biāo)為(1,9). ……………………………………………………2分
(2)設(shè)OB的垂直平分線(xiàn)交x軸于點(diǎn)H,直線(xiàn)CD交線(xiàn)段OB的垂直平分線(xiàn)于點(diǎn)F,
直線(xiàn)CD的解析式為
∴ ,,即直線(xiàn)CD的解析式為
∴ 點(diǎn)E坐標(biāo)為 (-8,0), 點(diǎn)F坐標(biāo)為 (2,10),EH=FH=10,EF=10…2分
假設(shè)線(xiàn)段OB的垂直平分線(xiàn)上存在點(diǎn)P,那么令點(diǎn)P坐標(biāo)為 (2,m),
過(guò)點(diǎn)P作PQ⊥CD交CD于點(diǎn)Q,則有OP=PQ=,PF= ……2分
由題意知,Rt△FPQ∽R(shí)t△FEH.
∴.∴
解得 ……………………………………………1分
∴ 點(diǎn)P坐標(biāo)為 (2,), ……………………………………………1分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年陜西省西安音樂(lè)學(xué)院初一上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
如圖,已知拋物線(xiàn)與軸交于點(diǎn),,與y軸交于點(diǎn).
(1)求拋物線(xiàn)的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線(xiàn)CD交軸于點(diǎn)E.在線(xiàn)段OB的垂直平分線(xiàn)上是否存在點(diǎn)P,使得點(diǎn)P到直線(xiàn)CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省黃岡市初二上學(xué)期期末數(shù)學(xué)卷 題型:解答題
如圖,已知拋物線(xiàn)與軸的兩個(gè)交點(diǎn)為A、B,與軸交于點(diǎn)C
(1)求A、B、C三點(diǎn)的坐標(biāo)?
(2)用配方法求該二次函數(shù)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)?
(3)若坐標(biāo)平面內(nèi)的點(diǎn)M,使得以點(diǎn)M和三點(diǎn)A、B、C為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)M的坐標(biāo)?(直接寫(xiě)出M的坐標(biāo),不用說(shuō)明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com