【題目】在△EFG中,∠G=90°,,正方形ABCD的邊長(zhǎng)為1,將正方形ABCD和△EFG如圖放置,AD與EF在一條直線上,點(diǎn)A與點(diǎn)E重合.現(xiàn)將正方形ABCD沿EF方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)A與點(diǎn)F重合時(shí)停止.在這個(gè)運(yùn)動(dòng)過(guò)程中,正方形ABCD和△EFG重疊部分的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)圖象大致是( 。
A.B.
C.D.
【答案】C
【解析】
分0≤t≤1、1<t≤2、2<t≤3、3<t≤4分別求出函數(shù)表達(dá)式即可求解.
解:EG=FG= ,則EF=4,
①當(dāng)0≤t≤1時(shí),如圖1,設(shè)AB交EG于點(diǎn)H,
則AE=t=AH,
S=×AE×AH=t2,函數(shù)為開(kāi)口向上的拋物線,當(dāng)t=1時(shí),y=;
②當(dāng)1<t≤2時(shí),如圖2,設(shè)直線EG交BC于點(diǎn)G,交CD于點(diǎn)H,
則ED=AE﹣AD=t﹣1=HD,則CH=CD﹣HD=2﹣t=CG,
S=S正方形ABCD﹣S△CGH=1﹣×CH×CG=1﹣(2﹣t)2,函數(shù)為開(kāi)口向下的拋物線,當(dāng)t=2時(shí),y=1;
③當(dāng)2<t≤3時(shí),
S=S正方形ABCD=1,
④當(dāng)3<t≤4時(shí),
同理可得:S=1﹣(t﹣3)2,為開(kāi)口向下的拋物線;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y1=ax2-2amx+am2+4,直線y2=kx-km+4,其中a≠0,a、k、m是常數(shù).
(1)拋物線的頂點(diǎn)坐標(biāo)是______,并說(shuō)明上述拋物線與直線是否經(jīng)過(guò)同一點(diǎn)(說(shuō)明理由);
(2)若a<0,m=2,t≤x ≤t+2,y1的最大值為4,求t的范圍;
(3)拋物線的頂點(diǎn)為P,直線與拋物線的另一個(gè)交點(diǎn)為Q,對(duì)任意的m值,若1≤k≤4,線段PQ(不包括端點(diǎn))上至少存在兩個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),求a的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)(a是常數(shù)),有下列說(shuō)法:
①函數(shù)圖象與坐標(biāo)軸總有三個(gè)不同的交點(diǎn);
②當(dāng)x<1時(shí),不是y隨x的增大而增大就是y隨x的增大而減;
③若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù).
其中錯(cuò)誤的說(shuō)法是( )
A.①B.①②C.②③D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中拋物線y=(x+1)(x﹣3)與x軸相交于A、B兩點(diǎn),若在拋物線上有且只有三個(gè)不同的點(diǎn)C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,則m的值是( )
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+2交x軸于點(diǎn)A(-1,0),B(n,0)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C.
(1)當(dāng)n=2時(shí)求△ABC的面積.
(2)若拋物線的對(duì)稱(chēng)軸為直線x=m,當(dāng)1<n<4時(shí),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一平面內(nèi),兩條平行的高速公路AB和CD之間有一條“L”型道路連通,“L”型道路中的EP=FP=20千米,∠BEP=12°,∠EPF=80°,求AB和CD之間的距離.(參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA切⊙O于點(diǎn)A,PC過(guò)點(diǎn)O且與⊙O交于B,C兩點(diǎn),若PA=6cm,PB=2cm,則△PAC的面積是_____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某區(qū)2014年八年級(jí)學(xué)生的體育測(cè)試情況,隨機(jī)抽取了該區(qū)若干名八年級(jí)學(xué)生的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì)分析,并根據(jù)抽取的成績(jī)等級(jí)繪制了如下的統(tǒng)計(jì)圖表:
成績(jī)等級(jí) | A | B | C | D |
人數(shù) | 60 | 10 |
請(qǐng)根據(jù)以上統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:
(1)本次抽查的學(xué)生有______ 名,成績(jī)?yōu)?/span>B類(lèi)的學(xué)生人數(shù)為______ 名,C類(lèi)成績(jī)所在扇形的圓心角度數(shù)為______
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)估計(jì)該區(qū)約5000名八年級(jí)學(xué)生體育測(cè)試成績(jī)?yōu)?/span>D類(lèi)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是
A. a>0 B. 當(dāng)﹣1<x<3時(shí),y>0
C. c<0 D. 當(dāng)x≥1時(shí),y隨x的增大而增大
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com