【題目】如果記yfx),并且f1)表示當x1y的值.即f1)=;f)表示當xy的值,f)=…,那么f(﹣1)+f(﹣2)+f(﹣)+f(﹣3)+f(﹣)+…+f(﹣2019)+f(﹣)=_____

【答案】2018.5.

【解析】

通過計算f(﹣2),f(﹣3),f(﹣)的值得到f(2)+f(﹣)=1,f(﹣3)+f(﹣)=1,從而得到規(guī)律f(﹣x)+1,然后利用此規(guī)律解答即可.

解:∵f(﹣2)=,,

f(﹣2)+1,

f(﹣3)=f(﹣)=,

f(﹣3)+f(﹣)=1

同理可得f(﹣2019)+f(﹣)=1,

f(﹣1)+f(﹣2)+f(﹣)+f(﹣3)+f(﹣)+…+f(﹣2019)+f(﹣)=+1×20182018.5

故答案為:2018.5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是反比例函數(shù)y在第一象限內(nèi)的圖象上的兩點,且A、B兩點的橫坐標分別是13,則SAOB_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A-10),B4,0),C0,2)三點,點D與點C關于x軸對稱,點P是線段AB上的一個動點,設點P的坐標為(m,0),過點Px軸的垂線l交拋物線于點Q,交直線BD于點M

1)求該拋物線所表示的二次函數(shù)的表達式;

2)在點P運動過程中,是否存在點Q,使得△BQM是直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由;

3)連接AC,將△AOC繞平面內(nèi)某點H順時針旋轉90°,得到△A1O1C1,點A、O、C的對應點分別是點AO1、C1、若△A1O1C1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“和諧點”,請直接寫出“和諧點”的個數(shù)和點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程

1)-3x 222x240 22xx3=x3 3)(x-3 +2x(x-3) =0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點與點同側,,且,過點于點的中點,連接.

(1)如圖1,當時,線段的數(shù)量關系是

(2)如圖2,當時,試探究線段的數(shù)量關系,并證明你的結論;

(3)如圖3,當時,求的值.

圖1 圖2 圖3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A、∠B、∠C所對的邊分別用a、bc表示.

1)如圖①,在△ABC中,∠A2B,且∠A60°.求證:a2bb+c

2)如圖②,在△ABC中,最大角∠A是最小角∠C2倍,且c7,b8,求a的長.

3)若一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們則稱這樣的三角形為“倍角三角形”.問題(1)中的三角形是一個特殊的倍角三角形,那么對于任意的倍角△ABC,如圖③,∠A2B,關系式a2bb+c)是否仍然成立?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BC是⊙O的弦,A是⊙O外一點,△ABC為正三角形,DBC的中點,M為⊙O上一點.

1)若AB是⊙O的切線,求∠BMC;

2)在(1)的條件下,若E,F分別是AB,AC上的兩個動點,且EDF120,⊙O的半徑為2,試問BECF的值是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,,,點是這個菱形內(nèi)部或邊上的一點,若以點,為頂點的三角形是等腰三角形,則,,兩點不重合)兩點間的最短距離為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線,經(jīng)過A1,0)、B7,0)兩點,交y軸于D點,以AB為邊在x軸上方作等邊△ABC

1)求拋物線的解析式;

2)在x軸上方的拋物線上是否存在點M,是SABM=SABC?若存在,請求出點M的坐標;若不存在,請說明理由;

3)如圖2,E是線段AC上的動點,F是線段BC上的動點,AFBE相交于點P

①若CE=BF,試猜想AFBE的數(shù)量關系及∠APB的度數(shù),并說明理由;

②若AF=BE,當點EA運動到C時,請直接寫出點P經(jīng)過的路徑長(不需要寫過程).

查看答案和解析>>

同步練習冊答案