二次函數的圖象在2<<3這一段位于軸的下方,在6<<7這一段位于軸的上方,則的值為【 】
A. 1 B. -1 C. 2 D. -2
科目:初中數學 來源: 題型:
如圖,菱形ABCD的對角線AC、BC相交于點O,E、F分別是AB、BC邊上的中點,連接EF,若
EF=,BD=4,則菱形ABCD的周長為( ).
A.4 B. C. D.28
查看答案和解析>>
科目:初中數學 來源: 題型:
問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設能搭成種不同的等腰三角形,為探究之間的關系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結論.
探究一:
(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
此時,顯然能搭成一種等腰三角形。所以,當時,
(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形
所以,當時,
(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形
所以,當時,
(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形
所以,當時,
綜上所述,可得表①
| 3 | 4 | 5 | 6 |
| 1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫出解答過程,并把結果填在表②中)
(2) 分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(只需把結果填在表②中)
| 7 | 8 | 9 | 10 |
|
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,……
解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(設分別等于、、、,其中是整數,把結果填在表③中)
|
|
|
|
|
|
問題應用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(要求寫出解答過程)
其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在數學活動課中,小敏為了測量校園內旗桿AB的高度,站在教學樓的C處測得旗桿底端B的俯角為45°,測得旗桿頂端A的仰角為30°,若旗桿與教學樓的距離為9m,則旗桿AB的高度是 m(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
已知拋物線,其中是常數
(1)求證:不論為何值,該拋物線與軸一定有兩個公共點;
(2)若該拋物線的對稱軸為直線,
①求該拋物線的函數解析式;
②把該拋物線沿軸向上平移多少個單位長度后,得到的拋物線與軸只有一個公共點?
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,∠BOC=60°,頂點C的坐標為(m,),反比例函數的圖像與菱形對角線AO交于D點,連接BD,當BD⊥x軸時,k的值是 利用三角函數求出D點坐標:D(-6,)
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com