【題目】如圖,,等腰直角三角形的腰在上,,將繞點逆時針旋轉(zhuǎn),點的對應(yīng)點恰好落在上,則的值為_____.
【答案】.
【解析】
根據(jù)旋轉(zhuǎn)得出∠NCE=75°,求出∠NCO,設(shè)OC=a,則CN=2a,根據(jù)△CMN也是等腰直角三角形設(shè)CM=MN=x,由勾股定理得出x2+x2=(2a)2,求出x=a,得出CD=a,代入求出即可.
解:∵將三角形CDE繞點C逆時針旋轉(zhuǎn)75°,點E的對應(yīng)點N恰好落在OA上,
∴∠ECN=75°,
∵∠ECD=45°,
∴∠NCO=180°﹣75°﹣45°=60°,
∵AO⊥OB,
∴∠AOB=90°,
∴∠ONC=30°,
設(shè)OC=a,則CN=2a,
∵等腰直角三角形DCE旋轉(zhuǎn)到△CMN,
∴△CMN也是等腰直角三角形,
設(shè)CM=MN=x,則由勾股定理得:x2+x2=(2a)2,
x=a,
即CD=CM=a,
∴==,
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對角線互相垂直的圓內(nèi)接四邊形叫做圓的奇妙四邊形.
(1)如圖①,已知四邊形是⊙的奇妙四邊形,若,則_______;
(2)如圖②,已知四邊形內(nèi)接于⊙,對角線交于點,若,
①求證:四邊形是⊙的奇妙四邊形;
②作于,請猜想與之間的數(shù)量關(guān)系,并推理說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論(1)4a+2b+c>0;(2)方程ax2+bx+c=0兩根之和小于零;(3)y隨x的增大而增大;(4)一次函數(shù)y=x+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。
A. 4 個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點E,D,在BC的延長線上取點F,使得BF=EF,EF與AC交于點G.
(1)試判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動中,黑板上畫著如圖所示的圖形,活動前老師在準備的四張卡片(大小、顏色、形狀相同)的正面上分別寫有如下四個等式中的一個等式:①;②;③;④;小英同學(xué)閉上眼睛從四張卡片中隨機抽出一張,再從剩下的卡片中隨機抽出另一張,請結(jié)合圖形回答下列問題:
(1)當抽得②和④時,用②和④作條件能否判定四邊形是平行四邊形,請說明理由;
(2)請你用樹狀圖或表格表示抽取兩張卡片上的條件的所有可能出現(xiàn)的結(jié)果(用序號表示)并求以已經(jīng)抽取的兩張卡片上的條件為已知,使四邊形不能構(gòu)成平行四邊形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)道路改造工程,由甲、乙兩工程隊合作20天可完成.甲工程隊單獨施工比乙工程隊單獨施工多用30天完成此項工程.
(1)求甲、乙兩工程隊單獨完成此項工程各需要多少天?
(2)若甲工程隊獨做a天后,再由甲、乙兩工程隊合作 天(用含a的代數(shù)式表示)可完成此項工程;
(3)如果甲工程隊施工每天需付施工費1萬元,乙工程隊施工每天需付施工費2.5萬元,甲工程隊至少要單獨施工多少天后,再由甲、乙兩工程隊合作施工完成剩下的工程,才能使施工費不超過64萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著社會經(jīng)濟的發(fā)展,汽車逐漸走入平常百姓家.某數(shù)學(xué)興趣小組隨機抽取了我市某單位部分職工進行調(diào)查,對職工購車情況分4類(A:車價40萬元以上;B:車價在20﹣40萬元;C:車價在20萬元以下;D:暫時未購車)進行了統(tǒng)計,并將統(tǒng)計結(jié)果繪制成以下條形統(tǒng)計圖和扇形統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:
(1)調(diào)查樣本人數(shù)為 ,樣本中B類人數(shù)百分比是 ,其所在扇形統(tǒng)計圖中的圓心角度數(shù)是 ;
(2)把條形統(tǒng)計圖補充完整;
(3)該單位甲、乙兩個科室中未購車人數(shù)分別為2人和3人,現(xiàn)從這5個人中選2人去參觀車展,用列表或畫樹狀圖的方法,求選出的2人來自不同科室的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中, , , ,D是AB邊的中點,E是AC邊上一點,聯(lián)結(jié)DE,過點D作交BC邊于點F,聯(lián)結(jié)EF.
(1)如圖1,當時,求EF的長;
(2)如圖2,當點E在AC邊上移動時, 的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出的正切值;
(3)如圖3,聯(lián)結(jié)CD交EF于點Q,當是等腰三角形時,請直接寫出BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠ACB=90°,AC=BC=1,將 Rt△ABC 繞 A 點逆時針旋轉(zhuǎn) 30°后得到 Rt△ADE,點 B 經(jīng)過的路徑為,則圖中陰影部分的面積是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com