【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(2,0),下列說法:①abc<0;﹣2b+c=0;4a+2b+c<0;④若( ,y1)、(,y2)是拋物線上的兩點,則y1<y2>m(am+b)(其中m≠).其中說法正確的是_____

【答案】①②④⑤;

【解析】

①根據(jù)拋物線開口方向、對稱軸位置、拋物線與y軸交點位置求得a、b、c的符號②根據(jù)對稱軸求出b=﹣a;③把x=2代入函數(shù)關系式,結(jié)合圖象判斷函數(shù)值與0的大小關系;④求出點(-,y1)關于直線x=的對稱點的坐標,根據(jù)對稱軸即可判斷y1y2的大小,⑤根據(jù)最大值判斷即可.

①∵圖像開口向下,

a<0,

拋物線與y軸交于y軸正半軸,

∴c>0,

對稱軸x= -=>0,

∴b>0,

∴abc<0,故①正確;

②將(2,0)代入y=ax2+bx+c (a≠0),

4a+2b+c=0,

∵-=,

∴a=﹣b,

∴﹣4b+2b+c=0,

∴﹣2b+c=0,故②正確;

③由②可知:4a+2b+c=0,故③錯誤;

④由于拋物線的對稱軸為x=

∴(,y1)與(,y1)關于x=對稱,

由于x>時,y隨著x的增大而減小,>

∴y1<y2 ,故④正確;

⑤由圖象可知:x=時,y可取得最大值,且最大值為a+b+c,

∴m≠

∴ a+ b+c>am2+bm+c,

a+b>m(am+b),故⑤正確;

故答案為:①②④⑤;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的中線,E,F分別是ADAD延長線上的點,且DEDF,連接BF,CE,下列說法:①△ABD 和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正確的是(

A. ①② B. ③⑤ C. ①③④ D. ①④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣bx+2(﹣2≤b≤2),當b從﹣2逐漸增加到2的過程中,它所對應的拋物線的位置也隨之變動,下列關于拋物線的移動方向的描述中,正確的是( 。

A. 先往左上方移動,再往左下方移動

B. 先往左下方移動,再往左上方移動

C. 先往右上方移動,再往右下方移動

D. 先往右下方移動,再往右上方移動

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結(jié)論中:

;方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則

其中正確的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)

(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?

(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣1.

x

﹣1

0

1

2

3

y

   

   

   

   

   

(1)請在表內(nèi)的空格中填入適當?shù)臄?shù);

(2)根據(jù)列表,請在所給的平面直角坐標系中畫出y=x2﹣2x﹣1的圖象;

(3)當x在什么范圍內(nèi)時,yx增大而減;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:

abc<0;2a﹣b<0;a﹣b+c>0;④點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2.其中正確的結(jié)論有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=﹣x2+x+2x軸交于A,B兩點,交y軸于點C,點C關于拋物線對稱軸對稱的點為D.

(1)求點D的坐標及直線AD的解析式;

(2)如圖1,連接CD、AD、BD,點M為線段CD上一動點,過MMNBD交線段ADN點,點Py軸上的動點,當△CMN的面積最大時,求△MPN的周長取得最小值時點P的坐標;

(3)如圖2,線段AE在第一象限內(nèi)交BD于點E,其中tanEAB=,將拋物線向右水平移動,點A平移后的對應點為點G;將△ABD繞點B逆時針旋轉(zhuǎn),旋轉(zhuǎn)后的三角形紀為△A1BD1,若射線BD1與線段AE的交點為F,連接FG.若線段FG把△ABF分成△AFG和△BFG兩個三角形,是否存在點G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,請直接寫出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AB=10,cosB=,點MAB邊的中點,將ABC繞著點M旋轉(zhuǎn),使點C與點A重合,點A與點D重合,點B與點E重合,得到DEA,且AECB于點P,那么線段CP的長是__________

查看答案和解析>>

同步練習冊答案