【題目】已知四邊形ABCD為正方形,E是BC的中點(diǎn),連接AE,過點(diǎn)A作∠AFD,使∠AFD=2∠EAB,AF交CD于點(diǎn)F,如圖①,易證:AF=CD+CF.
(1)如圖②,當(dāng)四邊形ABCD為矩形時(shí),其他條件不變,線段AF,CD,CF之間有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并給予證明;
(2)如圖③,當(dāng)四邊形ABCD為平行四邊形時(shí),其他條件不變,線段AF,CD,CF之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.
圖① 圖② 圖③
【答案】(1)圖②結(jié)論:AF=CD+CF. (2)圖③結(jié)論:AF=CD+CF.
【解析】試題分析:(1)作, 的延長線交于點(diǎn).證三角形全等,進(jìn)而通過全等三角形的對應(yīng)邊相等驗(yàn)證之間的關(guān)系;
(2)延長交的延長線于點(diǎn)由全等三角形的對應(yīng)邊相等驗(yàn)證關(guān)系.
試題解析:(1)圖②結(jié)論:
證明:作, 的延長線交于點(diǎn).
∵四邊形是矩形,
由是中點(diǎn),可證≌
(2)圖③結(jié)論:
延長交的延長線于點(diǎn)如圖所示
因?yàn)樗倪呅?/span>是平行四邊形
所以// 且,
因?yàn)?/span>為的中點(diǎn),所以也是的中點(diǎn),
所以
又因?yàn)?/span>
所以
又因?yàn)?/span>
所以≌
所以
因?yàn)?/span>
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“最美女教師”張麗莉,為搶救兩名學(xué)生,以致雙腿高位截肢,社會(huì)各界紛紛為她捐款,我市某中學(xué)九年級一班全體同學(xué)參加了捐款活動(dòng),該班同學(xué)捐款情況的部分統(tǒng)計(jì)圖如圖所示:
(1)求該班的總?cè)藬?shù);
(2)將條形圖補(bǔ)充完整,并寫出捐款總額的眾數(shù);
(3)該班平均每人捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,AD是∠BAC的角平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊△BEF,連接CF.
(1)求證:AE=CF;
(2)求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,甲、乙兩車從地出發(fā),沿相同路線前往同一目的地,途中經(jīng)過地.甲車先出發(fā),當(dāng)甲車到達(dá)地時(shí),乙車開始出發(fā).當(dāng)乙車到達(dá)地時(shí),甲車與地相距.設(shè)甲、乙兩車與地之間的距離為,,,乙車行駛的時(shí)間為,,與的函數(shù)關(guān)系如圖②所示.
(1),兩地之間的距離為 ;
(2)當(dāng)為何值時(shí),甲、乙兩車相距?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E,F分別是□ABCD的邊BC,AD上的中點(diǎn),且∠BAC=90°.
(1)求證:四邊形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,宿豫區(qū)某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有30米的距離(B、F、C在一條直線上).
(1)求教學(xué)樓AB的高度;
(2)若要在A、E之間掛一些彩旗,請你求出A、E之間的距離.(結(jié)果精確到lm)(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是等邊三角形內(nèi)一點(diǎn),將繞點(diǎn) .按順時(shí)針方向旋轉(zhuǎn)得, 連接.
(1)求證:是等邊三角形;
(2)當(dāng)時(shí), 試判斷的形狀,并說明理由;
(3)探究:當(dāng)為多少度時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達(dá),現(xiàn)在新建了橋EF(EF=DC),可直接沿直線AB從A地到達(dá)B地,已知BC=12km,∠A=45°,∠B=30°,橋DC和AB平行.
(1)求橋DC與直線AB的距離;
(2)現(xiàn)在從A地到達(dá)B地可比原來少走多少路程?
(以上兩問中的結(jié)果均精確到0.1km,參考數(shù)據(jù):≈1.14,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“品中華詩詞,尋文化基因”.某校舉辦了第二屆“中華詩詞大賽”,將該校八年級參加競賽的學(xué)生成績統(tǒng)計(jì)后,繪制了如下不完整的頻數(shù)分布統(tǒng)計(jì)表與頻數(shù)分布直方圖.
頻數(shù)分布統(tǒng)計(jì)表
組別 | 成績x(分) | 人數(shù) | 百分比 |
A | 60≤x<70 | 8 | 20% |
B | 70≤x<80 | 16 | m% |
C | 80≤x<90 | a | 30% |
D | 90≤<x≤100 | 4 | 10% |
請觀察圖表,解答下列問題:
(1)表中a= ,m= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)D組的4名學(xué)生中,有1名男生和3名女生.現(xiàn)從中隨機(jī)抽取2名學(xué)生參加市級競賽,則抽取的2名學(xué)生恰好是一名男生和一名女生的概率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com