【題目】如圖,在平面直角坐標(biāo)系中A點(diǎn)的坐標(biāo)為(8,) ,AB⊥軸于點(diǎn)B, sin∠OAB =,反比例函數(shù)的圖象的一支經(jīng)過AO的中點(diǎn)C,且與AB交于點(diǎn)D.

(1)求反比例函數(shù)解析式;

(2)求四邊形OCDB的面積.

【答案】(1) y = ;(2)15.

【解析】(1)先根據(jù)銳角三角函數(shù)的定義,求出OA的值,然后根據(jù)勾股定理求出AB的值,然后由C點(diǎn)是OA的中點(diǎn),求出C點(diǎn)的坐標(biāo),然后將C的坐標(biāo)代入反比例函數(shù)中,即可確定反比例函數(shù)解析式;

(2)連接BC,分別求出△OMB的面積,△OBC的面積,△BCD的面積,進(jìn)而確定四邊形OCDB的面積.

解:(1) ∵A點(diǎn)的坐標(biāo)為(8,m),AB⊥x軸,

∴OB=8

∵Rt△OBA中,sin∠OAB =

∴OA = 8×= 10,AB == 6

∵C是OA的中點(diǎn),且在第一象限 ∴C(4,3)

∴反比例函數(shù)的解析式為y =

(2)連接BC.

∵D在雙曲線y=上,且D點(diǎn)橫坐標(biāo)為8

∴D (8,),即BD=

又∵C(4,3)

∴四邊形OCDB的面積

= ×8×3 + ××4

= 15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn),與軸分別交于點(diǎn),點(diǎn).點(diǎn)是直線上方的拋物線上一動(dòng)點(diǎn).

(1)求二次函數(shù)的表達(dá)式;

(2)連接,,并把沿軸翻折,得到四邊形.若四邊形為菱形,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);

(3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形的面積最大?求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園手機(jī)現(xiàn)象越來越受到社會(huì)的關(guān)注,六一期間,記者隨機(jī)調(diào)查了某校若干名初四學(xué)生和家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下兩幅統(tǒng)計(jì)圖.

(1)求這次調(diào)查的家長(zhǎng)人數(shù),并補(bǔ)全條形圖;

(2)求扇形圖中表示家長(zhǎng)贊成的圓心角的度數(shù);

(3)若南崗區(qū)共有初四學(xué)生10000名,請(qǐng)估計(jì)在這些學(xué)生中,對(duì)中學(xué)生帶手機(jī)現(xiàn)象持無所謂態(tài)度的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=45°,AB的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)D;AC的垂

直平分線交AC于點(diǎn)G,交BC與點(diǎn)F,連接AD、AF,若AC=,BC=9,則DF等于(  。

A. B. C. 4 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C,D在⊙O上,BC=6cm,AC=8cm,∠BAD=45°.點(diǎn)E在⊙O外,做直線AE,且∠EAC=∠D.

(1)求證:直線AE是⊙O的切線.

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,方格圖中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)A、B、C都是格點(diǎn).

(1)畫出△ABC關(guān)于直線MN對(duì)稱的△A1B1C1;

(2)直接寫出AA1的長(zhǎng)度;

(3)如圖2,A、C是直線MN同側(cè)固定的點(diǎn),D是直線MN上的一個(gè)動(dòng)點(diǎn),在直線MN上畫出點(diǎn)D,使AD+DC最。ūA糇鲌D痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)我國著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個(gè)矩形分成四個(gè)全等的直角三角形,用四個(gè)全等的直角三角形拼成丁一個(gè)大的正方形(如圖1),這個(gè)矩形稱為趙爽弦圖,驗(yàn)證了一個(gè)非常重要的結(jié)論:在直角三角形中兩直角邊a、b與斜邊c滿足關(guān)系式a2b2c2,稱為勾股定理.

證明:∵大正方形面積表示為Sc2,,又可表示為Sab(ba)2,

ab(ba)2c2.

______________

即直角三角形兩直角邊的平方和等于斜邊的平方.

(2)愛動(dòng)腦筋的小明把這四個(gè)全等的直角三角形拼成了另一個(gè)大的正方形(如圖2),也能驗(yàn)證這個(gè)結(jié)論,請(qǐng)你幫助小明完成驗(yàn)證的過程.

(3)如圖3所示,∠ABC=∠ACE90°,請(qǐng)你添加適當(dāng)?shù)妮o助線,證明結(jié)論a2b2c2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,B,C兩點(diǎn)把線段AD分成2:5:3三部分,MAD的中點(diǎn),BM=6cm,求CMAD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案