【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(4,0),與y軸交于點(diǎn)C.
附:閱讀材料
法國(guó)弗朗索瓦韋達(dá)最早發(fā)現(xiàn)一元二次方程中根與系數(shù)的關(guān)系為:兩根之和等于一次項(xiàng)系數(shù)與二次項(xiàng)系數(shù)之比的相反數(shù),兩根之積等于常數(shù)項(xiàng)羽二次項(xiàng)系數(shù)之比,人們稱(chēng)之為韋達(dá)定理.
即:設(shè)一元二次方程ax2+bx+c=0的兩根為x1、x2 , 則:x1+x2=﹣ ,x1x2= 能靈活運(yùn)用韋達(dá)定理,有時(shí)可以使解題更為簡(jiǎn)單.
(1)求拋物線的解析式;
(2)以點(diǎn)A為圓心,作于直線BC相切的⊙A,求⊙A的面積;
(3)將直線BC向下平移n個(gè)單位后與拋物線交于點(diǎn)M、N,且線段MN=2CB,求直線MN的解析式及平移距離.
【答案】
(1)
解:設(shè)拋物線解析式為y=a(x﹣1)(x﹣4),
即y=ax2﹣5ax+4a,
∴4a=﹣2,解得a=﹣ ,
∴拋物線解析式為y=﹣ x2+ x﹣2;
(2)
解:作AD⊥BC于D,如圖,當(dāng)x=0時(shí),y=﹣ x2+ x﹣2=﹣2,則C(0,﹣2),
BC= =2 ;
∵∠ABD=∠CBO,
∴Rt△BAD∽R(shí)t△BCO,
∴ = ,即 = ,
∴AD= ,
∵直線BC相切的⊙A,
∴AD為⊙A的半徑,
∴⊙A的面積=π( )2= π;
(3)
解:設(shè)直線BC的解析式為y=kx+m,
把B(4,0),C(0,﹣2)代入得 ,解得 ,
∴直線BC的解析式為y= x﹣2,
設(shè)直線MN的解析式為y= x+t,M(x1,y1),N(x2,y2),
則x1、x2為方程﹣ x2+ x﹣2= x+2t的兩根,
方程整理為x2﹣4x+2t+4=0,
∴x1+x2=4,x1x2=2t+4,
∵y1﹣y2= x1+t﹣( x2+t)= (x1﹣x2),
∴MN= = = = = ,
∵M(jìn)N=2CB,
∴ =4 ,解得t=﹣8,
∴直線MN的解析式為y= x﹣8,
∴將直線BC向下平移6個(gè)單位得到直線MN,即平移的距離為6.
【解析】(1)設(shè)交點(diǎn)式y(tǒng)=a(x﹣1)(x﹣4),即y=ax2﹣5ax+4a,然后利用4a=﹣2求出a即可得到拋物線解析式;(2)作AD⊥BC于D,如圖,先確定C(0,﹣2),計(jì)算出BC=2 ,再證明Rt△BAD∽R(shí)t△BCO,利用相似比可計(jì)算出AD= ,然后利用切線的性質(zhì)得到圓的半徑為AD,再利用圓的面積公式求解;(3)先利用待定系數(shù)法確定直線BC的解析式為y= x﹣2,則可設(shè)直線MN的解析式為y= x+t,M(x1 , y1),N(x2 , y2),利用兩函數(shù)的交點(diǎn)問(wèn)題得到x1、x2為方程﹣ x2+ x﹣2= x+2t的兩根,利用根與系數(shù)的關(guān)系得x1+x2=4,x1x2=2t+4,則y1﹣y2= (x1﹣x2),接著利用兩點(diǎn)間的距離公式和完全平方公式得到MN= = ,所以 =4 ,解方程得到t的值,從而得到直線MN的解析式,然后利用直線平移的規(guī)律確定平移的距離.
【考點(diǎn)精析】本題主要考查了根與系數(shù)的關(guān)系和確定一次函數(shù)的表達(dá)式的相關(guān)知識(shí)點(diǎn),需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商;確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類(lèi)問(wèn)題的一般方法是待定系數(shù)法才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了維護(hù)海洋權(quán)益,新組建的國(guó)家海洋局加大了在南海的巡邏力度,一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時(shí)發(fā)現(xiàn)一艘不明國(guó)籍的船只停在C處海域.如圖所示,AB=60( )海里,在B處測(cè)得C在北偏東45°的方向上,A處測(cè)得C在北偏西30°的方向上,在海岸線AB上有一燈塔D,測(cè)得AD=120( )海里.
(1)分別求出A與C及B與C的距離AC、BC(結(jié)果保留根號(hào))
(2)已知在燈塔D周?chē)?00海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤(pán)查,圖中有無(wú)觸礁的危險(xiǎn)?
(參考數(shù)據(jù): =1.41, =1.73, =2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y= x+1交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A1、A2、A3 , …在x軸的正半軸上,點(diǎn)B1、B2、B3 , …在直線l上.若△OB1A1 , △A1B2A2 , △A2B3A3 , …均為等邊三角形,則△A6B7A7的周長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長(zhǎng)為3,∠A=60°,點(diǎn)M是AD邊上一點(diǎn),且DM= AD,點(diǎn)N是折線AB﹣BC上的一個(gè)動(dòng)點(diǎn).
(1)如圖1,當(dāng)N在BC邊上,且MN過(guò)對(duì)角線AC與BD的交點(diǎn)時(shí),則線段AN的長(zhǎng)度為 .
(2)當(dāng)點(diǎn)N在AB邊上時(shí),將△AMN沿MN翻折得到
△A′MN,如圖2,
①若點(diǎn)A′落在AB邊上,則線段AN的長(zhǎng)度為 ;
②當(dāng)點(diǎn)A′落在對(duì)角線AC上時(shí),如圖3,求證:四邊形AM A′N(xiāo)是菱形;
③當(dāng)點(diǎn)A′落在對(duì)角線BD上時(shí),如圖4,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=1,OC= ,在第二象限內(nèi),以原點(diǎn)O為位似中心將矩形AOCB放大為原來(lái)的 倍,得到矩形A1OC1B1 , 再以原點(diǎn)O為位似中心將矩形A1OC1B1放大為原來(lái)的 倍,得到矩形A2OC2B2…,以此類(lèi)推,得到的矩形A100OC100B100的對(duì)角線交點(diǎn)的縱坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)計(jì)算:4sin60°+|3﹣ |﹣( )﹣1+(π﹣2017)0 .
(2)解方程組: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖: ①分別以B,C為圓心,以大于 BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;
②作直線MN交AB于點(diǎn)D,連接CD.
若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A.90°
B.95°
C.100°
D.105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,地面上兩個(gè)村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時(shí)的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時(shí),測(cè)得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時(shí),測(cè)得∠ABD=75°.求村莊C、D間的距離( 取1.73,結(jié)果精確到0.1千米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過(guò)第三象限,則實(shí)數(shù)b的取值范圍是( )
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com