【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離( 取1.73,結果精確到0.1千米)

【答案】解:過B作BE⊥AD于E, ∵∠NAD=60°,∠ABD=75°,
∴∠ADB=45°,
∵AB=6× =4,
∴AE=2.BE=2 ,
∴DE=BE=2 ,
∴AD=2+2 ,
∵∠C=90,∠CAD=30°,
∴CD= AD=1+ ≈2.7千米.

【解析】過B作BE⊥AD于E,三角形的內(nèi)角和得到∠ADB=45°,根據(jù)直角三角形的性質(zhì)得到AE=2.BE=2 ,求得AD=2+2 ,即可得到結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別過點Pi(i,0)(i=1、2、…、n)作x軸的垂線,交 的圖象于點Ai , 交直線 于點Bi . 則 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(1,0)和點B(4,0),與y軸交于點C.
附:閱讀材料
法國弗朗索瓦韋達最早發(fā)現(xiàn)一元二次方程中根與系數(shù)的關系為:兩根之和等于一次項系數(shù)與二次項系數(shù)之比的相反數(shù),兩根之積等于常數(shù)項羽二次項系數(shù)之比,人們稱之為韋達定理.
即:設一元二次方程ax2+bx+c=0的兩根為x1、x2 , 則:x1+x2=﹣ ,x1x2= 能靈活運用韋達定理,有時可以使解題更為簡單.

(1)求拋物線的解析式;
(2)以點A為圓心,作于直線BC相切的⊙A,求⊙A的面積;
(3)將直線BC向下平移n個單位后與拋物線交于點M、N,且線段MN=2CB,求直線MN的解析式及平移距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:|2﹣ |+( ﹣2016)0+2cos30°+( 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設點M運動時間為x(s),△AMN的面積為y(cm2),則y關于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx+2與x軸、y軸分別交于點A(﹣1,0)和點B,與反比例函數(shù)y= 的圖象在第一象限內(nèi)交于點C(1,n).
(1)求k的值;
(2)求反比例函數(shù)的解析式;
(3)過x軸上的點D(a,0)作平行于y軸的直線l(a>1),分別與直線AB和雙曲線y= 交于點P、Q,且PQ=2QD,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設點M運動時間為x(s),△AMN的面積為y(cm2),則y關于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直角三角形AOB的頂點A、B分別落在坐標軸上.O為原點,點A的坐標為(6,0),點B的坐標為(0,8).動點M從點O出發(fā).沿OA向終點A以每秒1個單位的速度運動,同時動點N從點A出發(fā),沿AB向終點B以每秒 個單位的速度運動.當一個動點到達終點時,另一個動點也隨之停止運動,設動點M、N運動的時間為t秒(t>0).

(1)當t=3秒時,直接寫出點N的坐標;
(2)在此運動的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當t為何值時,△MNA是一個等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣3x+m(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關于x的一元二次方程x2﹣3x+m=0的兩實數(shù)根是(
A.x1=1,x2=﹣1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3

查看答案和解析>>

同步練習冊答案