【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點(diǎn)A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長;
(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).
【答案】(1) 14cm;(2)36°
【解析】分析:(1)折疊時(shí),對稱軸為折痕DE,DE垂直平分線段AB,由垂直平分線的性質(zhì)得DA=DB,再把△ACD的周長進(jìn)行線段的轉(zhuǎn)化即可;
(2)設(shè)∠CAD=x,則∠BAD=2x,根據(jù)(1)DA=DB,可證∠B=∠BAD=2x,在Rt△ABC中,利用互余關(guān)系求x,再求∠B.
詳解:
(1)由折疊的性質(zhì)可知,DE垂直平分線段AB,
根據(jù)垂直平分線的性質(zhì)可得:DA=DB,
所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;
(2)設(shè)∠CAD=x,則∠BAD=2x,
∵DA=DB,
∴∠B=∠BAD=2x,
在Rt△ABC中,∠B+∠BAC=90°,
即:2x+2x+x=90°,x=18°,
∠B=2x=36°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠DCE的角平分線CG的反向延長線和∠ABE的角平分線BF交于點(diǎn)F,∠E﹣∠F=36°,則∠E=( )
A.82°B.84°C.97°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種新型生物醫(yī)藥產(chǎn)品,生產(chǎn)成本為2萬元/ 噸,每月生產(chǎn)能力為12噸,且生產(chǎn)出的產(chǎn)品都能銷售出去.這種產(chǎn)品部分內(nèi)銷,另一部分外銷(出口),內(nèi)銷與外銷的單價(jià) (單位:萬元/噸)與銷量的關(guān)系分別如圖1,圖2.
(1)如果該公司內(nèi)銷數(shù)量為x(單位:噸),內(nèi)、外銷單價(jià)分別為y 1 , y 2 ,求, 關(guān)于x的函數(shù)解析式;
(2)如果該公司內(nèi)銷數(shù)量為x(單位:噸),求內(nèi)銷獲得的毛利潤 關(guān)于x的函數(shù)解析式;
(3)請?jiān)O(shè)計(jì)一種銷售方案,使該公司本月能獲得最大毛利潤,并求出毛利潤的最大值.(毛利潤=銷售收入-生產(chǎn)成本).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因快手及抖音等新媒體的傳播,衢州水亭門已成為最著名的旅游景點(diǎn)之一,2019年“十一”黃金周期間,接待游客已達(dá)萬人次.衢州美食無數(shù),一家特色小面店希望在長假期間獲得較好的收益,經(jīng)測算知,該小面的成本價(jià)為每碗元,借鑒以往經(jīng)驗(yàn):若每碗小面賣元,平均每天能夠銷售碗,若降價(jià)銷售,每降低元,則平均每天能夠多銷售碗.為了維護(hù)城市形象,規(guī)定每碗小面的售價(jià)不得超過元,則當(dāng)每碗小面的售價(jià)定為多少元時(shí),店家才能實(shí)現(xiàn)每天盈利元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班有50位學(xué)生,每位學(xué)生都有一個序號,將50張編有學(xué)生序號(從1號到50號)的卡片(除序號不同外其它均相同)打亂順序重新排列,從中任意抽取1張卡片.
(1)在序號中,是20的倍數(shù)的有:20,40,能整除20的有:1,2,4,5,10(為了不重復(fù)計(jì)數(shù),20只計(jì)一次),求取到的卡片上序號是20的倍數(shù)或能整除20的概率;
(2)若規(guī)定:取到的卡片上序號是k(k是滿足1≤k≤50的整數(shù)),則序號是k的倍數(shù)或能整除k(不重復(fù)計(jì)數(shù))的學(xué)生能參加某項(xiàng)活動,這一規(guī)定是否公平?請說明理由;
(3)請你設(shè)計(jì)一個規(guī)定,能公平地選出10位學(xué)生參加某項(xiàng)活動,并說明你的規(guī)定是符合要求的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的液體,并用流量、速度、密度三個概念描述車流的基本特征。其中流量q(輛/小時(shí))指單位時(shí)間內(nèi)通過道路指定斷面的車輛數(shù);速度v(千米/小時(shí))指通過道路指定斷面的車輛速度;密度(輛/千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù),為配合大數(shù)據(jù)治堵行動,測得某路段流量q與速度v之間的部分?jǐn)?shù)據(jù)如下表:
速度v(千米/小時(shí)) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量q(輛/小時(shí)) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根據(jù)上表信息,下列三個函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準(zhǔn)確的是(只需填上正確答案的序號)① ② ③
(2)請利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速為多少時(shí),流量達(dá)到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題:
①市交通運(yùn)行監(jiān)控平臺顯示,當(dāng) 時(shí)道路出現(xiàn)輕度擁堵,試分析當(dāng)車流密度k在什么范圍時(shí),該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離d(米)均相等,求流量q最大時(shí)d的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:的兩條高交于點(diǎn),點(diǎn)分別是,的中點(diǎn),連接.
求證:垂直平分;
若.判斷以為頂點(diǎn)的四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形紙片中,點(diǎn)為上一點(diǎn),將沿折疊,剛好使點(diǎn)落在對角線上的點(diǎn)處.
用尺規(guī)作圖,在圖上作出折疊線.以及點(diǎn)的對稱點(diǎn)(不寫作法,但要保留作圖痕跡,)
求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計(jì)算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當(dāng)F(s)+F(t)=18時(shí),求k的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com