【題目】如圖,在一單位長度為1cm的方格紙上,依如圖所示的規(guī)律,設(shè)定點(diǎn)A1、A2、A3、A4、A5、A6、A7、…、An,連接點(diǎn)O、A1、A2組成三角形,記為△1,連接O、A2、A3組成三角形,記為△2…,連O、An、An+1組成三角形,記為△n(n為正整數(shù)),請你推斷,當(dāng)n為50時,△n的面積=( )cm2.
A. 1275 B. 2500 C. 1225 D. 1250
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在杭州西湖風(fēng)景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為13m,此人以0.5m/s的速度收繩.10s后船移動到點(diǎn)D的位置,問船向岸邊移動了多少m?(假設(shè)繩子是直的,結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,∠A=90°,AB=AC=+1,P 是△ABC 內(nèi)一個動點(diǎn),PD⊥AB、PE⊥AC、PF⊥BC,垂足分別為 D、E、F,且 PD+PE=PF.則點(diǎn) P 運(yùn)動所形成的圖形的長度是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= , 求BC和BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角尺的直角頂點(diǎn)放在直線a上,a//b,∠1=50°,∠2=60°,則∠3的度數(shù)為( )
A.50°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣2,2),B(﹣3,﹣2)
(1)若點(diǎn)D與點(diǎn)A關(guān)于y軸對稱,則點(diǎn)D的坐標(biāo)為 .
(2)將點(diǎn)B先向右平移5個單位再向上平移1個單位得到點(diǎn)C,則點(diǎn)C的坐標(biāo)為 .
(3)求A,B,C,D組成的四邊形ABCD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從圖所示的風(fēng)箏中可以抽象出幾何圖形,我們把這種幾何圖形叫做“箏形”.
具體定義如下:如圖,在四邊形中, , ,我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”.
()結(jié)合圖,通過觀察、測量、折紙,可以猜想“箏形”具有諸如“平分和”這樣的性質(zhì),請結(jié)合圖形,再寫出兩條“箏形”的性質(zhì).
①____________________________.
②____________________________.
()從你寫出的兩條性質(zhì)中,任選一條“箏形”的性質(zhì)給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在如圖所示的平面直角中, 將其平移后得△, 若B的對應(yīng)點(diǎn)的坐標(biāo)是(-2, 2).
(1) 在圖中畫出△;
(2) 此次平移可看作將△ABC向_____平移了____個單位長度, 再向___平移了___個單位長度得△;
(3) △ABC的面積為____________.(△ABC的面積可以看作一個長方形的面積減去一些小三角形的面積)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)某商場統(tǒng)計(jì)了今年1~5月A,B兩種品牌冰箱的銷售情況,并將獲得的數(shù)據(jù)繪制成折線統(tǒng)計(jì)圖.
(1)分別求該商場這段時間內(nèi)A,B兩種品牌冰箱月銷售量的中位數(shù)和方差;
(2)根據(jù)計(jì)算結(jié)果,比較該商場1~5月這兩種品牌冰箱月銷售量的穩(wěn)定性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com