【題目】如圖,正方形ABCD的邊長為2,BC邊在x軸上,BC的中點與原點O重合,過定點M(-2,0)與動點P(0,t)的直線MP記作l.

(1)l的解析式為y=2x+4,判斷此時點A是否在直線l上,并說明理由;

(2)當(dāng)直線lAD邊有公共點時,求t的取值范圍.

【答案】(1)A在直線l上,理由見解析;(2)≤t≤4.

【解析】

1)由題意得點B、A坐標(biāo),把點A的橫坐標(biāo)x=-1代入解析式y2x4得出y的值,即可得出點A在直線l上;

(2)當(dāng)直線l經(jīng)過點D時,設(shè)l的解析式代入數(shù)值解出即可

(1)此時點A在直線l上.

BCAB2,點OBC中點,

∴點B(1,0)A(1,2)

把點A的橫坐標(biāo)x=-1代入解析式y2x4,得

y2,等于點A的縱坐標(biāo)2,

∴此時點A在直線l上.

(2)由題意可得,點D(1,2),及點M(2,0),

當(dāng)直線l經(jīng)過點D時,設(shè)l的解析式為ykxt(k≠0),

解得

(1)知,當(dāng)直線l經(jīng)過點A時,t4.

∴當(dāng)直線lAD邊有公共點時,t的取值范圍是≤t≤4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線上有A、B兩個觀測點,BA的正東方向,AB4km.從A測得燈塔C在北偏東53°方向上,從B測得燈塔C在北偏西45°方向上,求燈塔C與觀測點A的距離(精確到0.1km)(參考數(shù)據(jù):sin37°≈0.60cos37°≈0.80,tan37°≈0.75,sin53°≈0.80cos53°≈0.60,tan53°≈1.33)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐵路建設(shè)助推經(jīng)濟發(fā)展,近年來我國政府十分重視鐵路建設(shè).渝利鐵路通車后,從重慶到上海比原鐵路全程縮短了320千米,列車設(shè)計運行時速比原鐵路設(shè)計運行時速提高了120千米/小時,全程設(shè)計運行時間只需8小時,比原鐵路設(shè)計運行時間少用16小時.

(1)渝利鐵路通車后,重慶到上海的列車設(shè)計運行里程是多少千米?

(2)專家建議:從安全的角度考慮,實際運行時速減少m%,以便于有充分時間應(yīng)對突發(fā)事件,這樣,從重慶到上海的實際運行時間將增加m%小時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若干個半徑為1個單位長度,圓心角是的扇形按圖中的方式擺放,動點K從原點O出發(fā),沿著半徑OAABBC半徑CD半徑DE的曲線運動,若點K在線段上運動的速度為每秒1個單位長度,在弧線上運動的速度為每秒個單位長度,設(shè)第n秒運動到點K為自然數(shù),則的坐標(biāo)是____的坐標(biāo)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把圖中陰影部分的小正方形移動一個,使它與其余四個陰影部分的正方形組成一個既是軸對稱又是中心對稱的新圖形,這樣的移法,正確的是(  )

A. 6→3 B. 7→16 C. 7→8 D. 6→15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了方便學(xué)生在上下學(xué)期間安全過馬路,南岸區(qū)政府決定在南開(融僑)中學(xué)校門口修建人行天橋(如圖1),其平面圖如圖2所示,初三(8)班的學(xué)生小劉想利用所學(xué)知識測量天橋頂棚距地面的高度.天橋入口A點有一臺階AB=2m,其坡角為30°,在AB上方有兩段平層BC=DE=1.5m,且BC,DE與地面平行,BC,DE上方又緊接臺階CD,EF,其長度相等且坡度均為i=43,頂棚距天橋距離FG=2m,且小劉從入口A點測得頂棚頂端G的仰角為37°,請根據(jù)以上數(shù)據(jù),幫小劉計算出頂端G點距地面高度為( 。m.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):≈1.73sin37°≈,cos37°≈tan37°≈

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】構(gòu)造圖形解題,它的應(yīng)用十分廣泛,特別是有些技巧性很強的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時,如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實例:

實例一:1876年,美國總統(tǒng)伽非爾德利用實例一圖證明了勾股定理:由S四邊形ABCD=SABC+SADE+SABE得:a+b2=2×ab+c2,化簡得:a2+b2=c2

實例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程x2+ax=b2的圖解法是:畫RtABC,使∠ACB=90°BC=,AC=|b|,再在斜邊AB上截取BD=,則AD的長就是該方程的一個正根(如實例二圖).

請根據(jù)以上閱讀材料回答下面的問題:

1)如圖1,請利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是______,乙圖要證明的數(shù)學(xué)公式是______,體現(xiàn)的數(shù)學(xué)思想是______

2)如圖2,若2-8是關(guān)于x的方程x2+ax=b2的兩個根,按照實例二的方式構(gòu)造RtABC,連接CD,求CD的長;

3)若x,y,z都為正數(shù),且x2+y2=z2,請用構(gòu)造圖形的方法求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知邊長為2的正三角形ABC頂點A的坐標(biāo)為(0,6),BC的中點Dy軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為(  )

A. 3 B. 4﹣ C. 4 D. 6﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在正方形ABCD中,點MBC邊上一點,BM=4MC,以M為直角頂點作等腰直角三角形MEF,點E在對角線BD上,點F在正方形外EFBC于點N,連CF,若BE=2,SCMF=3,則MN_____.

查看答案和解析>>

同步練習(xí)冊答案